

Building the Foundation for Energy Resilient Communities: Clean Energy Group's Resilient Power Funding Programs' 2022 Impact

November 14, 2023

www.cleanegroup.org

Webinar Logistics

Use the orange arrow to open and close your control panel

Submit questions and comments via the Questions panel

This webinar is being recorded. We will email you a webinar recording within 48 hours. This webinar will be posted on CEG's website at <u>www.cleanegroup.org/webinars</u>

F	e View Help
C	Audio
	Telephone
1	Mic & Speakers Settings
5	MUTED 400000000
┢	Questies
ľ	Questions
L	<u> </u>
L	
L	
L	
Ī	nter a question for staff]
L	
	Send
-	
	GolovVebinar
_	

Affordable, reliable, clean energy for all.

Climate Resilience and Community Health

Distributed Energy Access and Equity 4

Energy Storage and Flexible Demand

www.cleanegroup.org

Fossil Fuel Replacement

Resilient Power Project

Building the foundation for energy resilient communities.

www.resilient-power.org

Rooftop solar installation in Dorchester, MA. Credit: Resonant Energy

Webinar Speakers

Building the Foundation for Energy Resilient Communities: Clean Energy Group's Resilient Power Funding Programs' 2022 Impact

Tinice **Williams**

Executive Director, Feed the Second Line

Amit Munshi President and CEO, JPHB

Anthony **Nicholson** Lead Scientist, **JPHB**

Abbe Craig Lewis Adamsson Ramanan Executive Director, Project Director, Project Manager, Clean Coalition Clean Energy Group Clean Energy Group

Anna

OCTOBER 2023 **CleanEnergy**Group

Resilient Power Funding Programs Building the Foundation for Energy Resilient Communities

2022 ANNUAL IMPACT REPORT

Initiative

Anna Adamsson **Project Manager** Anna@cleanegroup.org

Read the report here:

CleanEnergyGroup

Technical Assistance Fund and Resilient Power Leadership

2022 Impact Report

Abbe Ramanan **Project Director** Abbe@cleanegroup.org

www.cleanegroup.org/publication/2022-annual-impact-report

Technical Assistance Fund (TAF)

- Created in 2014 to fill a critical resource gap for community-serving institutions seeking to develop solar+storage
- Provides dedicated one-on-one support, plus targeted funding, to help organizations assess and understand their resilient power needs
- All projects must serve underrepresented • communities; 50% of funding is reserved for **BIPOC-led organizations**
- Low-barrier to entry: applicants are not • required to have extensive knowledge of solar+storage

www.cleanegroup.org/initiatives/technical-assistance-fund

Level of Existing Knowledge on Solar and Storage Technologies

A lot of knowledge 34%

Little or no knowledge 28%

Some knowledge 38%

Resilient Power Leadership Initiative

- Created in 2017 to seed long-term, community-led programs advancing energy equity and environmental justice.
- Provides funding and capacity • building to organizations to develop local resilient power awareness, training programs, and solar+storage implementation strategies.
- Since 2020, 100% of funds have gone towards BIPOC-led organizations.

www.cleanegroup.org/initiatives/resilient-power-leadership-initiative

Community Resiliency Hub opening. Credit: Queen Shabazz, UPA

Resilient Power Project Impact: 2013 - 2022

\$1.3 million in Grants Awarded

Over 100 Community Service Partners

www.cleanegroup.org

255 Community Facilities

Resilient Power Project Impact: 2013 - 2022

\$1.3 million in **Grants Awarded**

Over 100 Community Service Partners

\$200,000 Awarded in 2022

Supported 23 communities across 11 states and Native Nations

Resilient Power Project Impact: 2022

www.cleanegroup.org

255 Community Facilities

6 completed projects in 2022

- Vieques Community Microgrid (PR)
- Community Solar Resilience Hub (VA)
- Gleason YMCA (MA)
- Finch Cambridge affordable housing (MA)
- SOMA Studio and Family Apartments (CA)
- Union Square Apartments (MA)

Feed the Second Line Get Lit Stay Lit. Source: Katie Sikora

2022 Solar+Storage Trends

Mobile Solar+Storage

- Mobile solar+storage typically entails solar panels and a battery installed on a trailer or other vehicle, allowing the system to charge.
- **Gentilly Beehive Microgrid Project:** Microgrid charges mobile battery units that can be dispatched during emergencies. Solar trailers can be connected to microgrid or dispatched.
 - Partners: Footprint Project, Groundwork
 New Orleans, NET Gentilly Charter School
- **DignityMoves Project**: Solar+storage systems for temporary housing structures, designed for easy relocation every 3-5 years.
 - Partners: DignityMoves, Clean Coalition

Installing a solar panel "wing" on a solar trailer. Credit: Footprint Project.

2022 Solar+Storage Trends

Resilient Power for Public Health

- Solar+storage used to power emergency response systems as well as meet the needs of medically vulnerable individuals.
- Resilient power can be especially beneficial in affordable housing communities serving seniors and/or people living with disabilities.
- Navajo Nation Project: Solar+storage systems for two single-family homes with medically vulnerable residents living off-grid.
 - **Partners:** JPHB Solutions, Navajo Nation Mountain Chapter

TAF engineering partners with Navajo Nation residents, installing solar+storage on their home. Credit: JPHB Solutions

New and Continuing Partnerships

TAF Engineers

- CEG is committed to awarding at least 50% of TAF funds to BIPOC-led organizations. We have yet to meet that goal, but 2022 saw the highest percentage awarded yet (43%).
- One avenue we have identified for reaching • communities we have not in the past is working with broader network of engineers.
- Engineers conduct the techno-economic ٠ solar+storage feasibility assessments that are part of the TAF and are invaluable partners in our work.
- New Partners in 2022: Gemini Energy Solutions, ulletClean Coalition

TAF Engineering Partners:

New and Continuing Partnerships

Expanding Affordable Housing

Work

- Affordable housing has historically received at least 50% of TAF awards.
- Affordable housing received 67% of TAF awards in 2022.
- One driver: CEG launched our partnership with the Connecticut Green Bank.
- This has been expanded through a grant from the Robert Wood Johnson Foundation to provide health-focused solar+storage assessments for affordable housing providers serving medically vulnerable residents.

TAF Awards by Sector, 2022

Why projects pursue solar+storage 30 —

- Almost half of TAF applicants cite 'resilient backup power' as their primary reason for exploring solar+storage
- Four TAF applicants cited 'community ownership' of electrical resources as a primary motivator

Technical Assistance Fund Partners' Motivations for Pursuing Resilient Power in 2022

Top Three Barriers to Solar+Storage Project Development

Investment Tax **Credit Improves** Economics

- Solar+storage projects can receive back at least 30 percent and up to 70 percent of eligible project costs
- Of all TAF awardees over the past decade, over 60 percent could be eligible for either the energy community bonus credit and/or the low-income community bonus credit

Bonus Credits Available within the Investment Tax Credit

2022 Impacts and Looking Forward

 2022 projects have the potential to serve over 20,000 community members and 3,000 affordable housing residents

Subscribe to the Clean Energy Group newsletter to hear from our 2023 awardees and be first to know about 2023's year-in review impact report and trends analysis.

As of 2023, the TAF supported projects in **30 states**

Thank You!

Newsletters: cleanegroup.org/newsletters

Abbe Ramanan

Project Director Clean Energy Group <u>Abbe@cleanegroup.org</u>

www.cleanegroup.org

Anna Adamsson

Project Manager Clean Energy Group <u>Anna@cleanegroup.org</u>

NEIGHBORHOOD RESTAURANTS As hurricane resiliency hubs USING Solar + Batteries

U.S. DEPARTMENT OF ENERGY

Our Mission:

- Building a stronger safety-net
- Job creation
- Healthy culture

For the culture creators of New Orleans

August 2021 We launched

The Aftermath of Hurricane IDA

The Governor called Ida the "strongest storm to hit Louisiana since 1856....."

The Aftermath of Hurricane IDA

the electrical grid was completely knocked out - and many neighborhoods were without power for 10 days...

In sweltering summer heat....

EMPOWERING NEIGHBORHOOD RESTAURANTS **TO HELP THEIR** COMMUNITY **AFTER A** HURRICANE

PROBLEM

AFTER A STORM

After a hurricane, the power is out. Citizens who did not evacuate are left to fend for themselves. Elders can die from heat and people go hungry.

STAY LIT

Outfitting neighborhood restaurants with solar panels and storage — transforms the local restaurant into a resilience hub for the immediate neighborhood.

SOLUTION

With solar & our partnership agreements, restaurants become cooling centers, food production centers (food is saved from waste) and cellphone charging stations.

WHAT PEOPLE NEED

- The week after a hurricane citizens'
- top needs include:
 - prepared meals, water
 - Cellphone charging
 - Cooling center
 - neighborhood based-hubs

RESILIENT RESTAURANTS

Furthermore, restaurants save money on monthly bills, creating future, ever-green funding.

Ine Impact:

COMMUNITY

- engaged community networks by building micro-grids in three lowincome neighborhoods, ensuring that vulnerable residents have access to essential needs after a storm
- established a sustainable and scalable program model
- Job training opportunities for
- solar Hired Staff from the Communities We Serve

RESTAURANT

- Reopen quickly
- Fewer job interruptions
- Energy savings able to support their community in time of need/becoming first responders

if we partner with cultural groups... we can hopefully create a jobtraining pipeline for our city....

JOBS FOR THE CULTURE

PARTNERS

every neighborhood needs a micro-grid for the next hurricane....

What if neighborhood restaurants were the solution?

The Goal: STAY LIT RESTAURANTS

A PATHWAY TO SELF-GENERATED EVERGREEN FUNDING +

We have 4 completed-296 more to go :)

JOB TRAINING

LESS THAN A YEAR AFTER HURRICANE IDA, WE INSTALLED OUR FIRST STAY LIT:

QUEEN TRINI LISA IN MID-CITY

This can be a little hub of support, and that's what I want to provide.

OUR Second STAY LIT:

AFRODISIAC NOLA-GENTILLY

My wife and I have both experienced feeling helpless after a storm. Now we can make sure that our neighbors.

OUR Third STAY LIT: FRITAI-TREME

With "Get Lit, Stay Lit, I have the ausuurance of knowing that my people and my product will be safe during a storm or outage.

Perishables stay cold, phones stay charged, and we can feed folks no matter the season without the impact of whats going on outside.

OUR Fourth STAY LIT: GRACE AT THE GREEN LIGHT-UPTOWN

Resilient Power Community Leadership Initiative

- Restaurant Recruitment
- Field Experience
- Hire a Grant Writing Team

Devastating power outages are a fact of life in Louisiana.

Restaurants can become the community's first responders.

LET'S EMPOWER THEM **AS MICRO-GRIDS IN FUTURE HURRICANES**

GETLIT STAVLIT

www.feedthesecondline.org

Energy Resiliency for Navajo Families

November 14, 2023 Dr. Amit H. Munshi Dr. Anthony P. Nicholson

Proud member of -

National Small Business Association Leadership Council Member

https://www.usa-cdte.org/

Our Core Team

Dr. Amit H. Munshi Technology Development, Project Management, Procurement, Corporate Outreach, and Resource Management.

12 years experience in solar technology development, project planning and execution.

Anthony Nicholson Development and Technology Assessment/ Computational Modeling Lead

Atomistic modeling, CFD and FEA simulations, Solar+Storage integration

William Nichols Finance and IT Security Lead

Financial Modeling and Analysis lead, Information Technology Security

Kevan Cameron Chief Engineering and Plant Manager. Vacuum systems and thin film technology expert.

Three decades of high-tech equipment engineering, thin film PV fabrication, and vacuum systems. Navy veteran with 10 years managing the Space Simulation Laboratory at Lockheed Martin Corporation.

Top technical talent from First Solar and Toledo Solar now starting JPHB

Advisory Board -

<u>Prof. W.S. Sampath</u> Solar cell technology expert Technology development advisor

Jay Munshi Columbia Business School alumnus Risk analysis advisor

<u>Doug Schatz</u>

Founder, Advanced Energy Business and Product Development

Advantages of PV + Storage Irrigation, Grey Water Processing, Drinking Water Desalination **Food Production** Residential WATER **Depleted Gas Cavity** STORAGE Industrial Solar Agrivoltaics Off-grid PV + storage systems can do all of these on a local/community scale!

Potential Impacts by Off-Grid PV + Storage

Self-Sustainable Energy

able Energy

Workforce Development

Resource Accessibility

Assessments for Off-Grid PV + Storage Feasibility

Homestead Location (Google Earth Satellite Image)

Simulated Scene

Estimated Consumer Energy Needs

		Power per Appl.		
Appliance	Number	(W)	Usage (hr/day)	Energy (Wh/day)
Lamps (LED)	8	10	12	960
Computer/Mobile	1	75	7	525
Electric Cooker	2	1000	2	4000
Fridge/Freezer	1	250	24	6000
Fan	3	45	12	1620
Television (42")	1	120	3	360
	Total	2660	Total	13465

Objective: Identify the needs of each family homestead prior to implementing a solution

Assessments for Off-Grid PV + Storage Feasibility

Donations for Expanding Homestead Locations

15 modules gifted by GRID Alternatives

Potential for donation/discount on racking/mounting structures

Approved donation by FSLR for 20+ modules

Implementation of Off-Grid PV + Storage Prototype

Implementation of Off-Grid PV + Storage Prototype

Final Design of Off-Grid PV + Storage System

Thank You! Questions?

amit@jphb.us anthonynicholson@jphb.us

Interested in JPHB? Find more information at https://jphb.us/#/

This material is based upon work supported by the National Science Foundation MPS-Ascend Postdoctoral Research Fellowship under Grant No. 2138081.

DignityMoves Santa Maria

Solar Microgrid Feasibility Study

Craig Lewis Executive Director 650-796-2353 mobile craig@clean-coalition.org

Making Clean Local Energy Accessible Now

14 November 2023

DignityMoves Santa Maria – site plan

Clean Coalition

DignityMoves Santa Maria – example units

Cube144 - 8.5' x 17' Two Room MODEL # BCULT08517GN000 Temporary "pop-up" housing unit examples for the Santa Maria site.

BOSS CUBEZ TEMPORARY SINGLES ADA EN SUITE

LIFEARK HOUSING TYPES 1.5 MODULE 100 SF SHELTER FOR FAMILY

- 3 X 1 DOUBLE FAMILY SHELTER UNIT
 PRIVATE LOCKABLE BEDROOM UNIT
 PRIVATE BATHROOM
- LIGHTING AND POWER OUTLET
- AIR CONDITIONER/ HEATER
 FIRE SPRINKLER
- COMMUNITY CLUSTERING

LIFEARK

Optimize the DER mix to achieve the following outcomes:

- 1. Serve all energy needs for a 100% electric community design until the electricity utility (PG&E) can establish service.
- 2. Achieve net zero energy.
- 3. Maintain Tier 1 (critical) loads during grid outages of any duration.
- Support Tier 2 (priority) loads for the majority of time and Tier 3 (discretionary) loads for significant percentages of time.
- 5. Preempt the use of diesel and any other fossil fuels.
- 6. Standardize the Solar Microgrid components for ongoing use via Solar Microgrid kits for modular units.
- 7. Maximize economic benefits.

Solar Microgrid Methodology steps

Clean Coalition

Step 1 🚽 Step 2		Step 3	Step 4	Step 5		
<u>Load</u> <u>Profiles</u>		<u>Resource</u> <u>Scenarios</u>		<u>Site</u> Layouts	<u>Economic</u> <u>Analysis</u>	<u>Reporting &</u> <u>Recommendations</u>
 <u>Baseline</u>: recent annual loads. <u>Master</u>: adds future expected loads, <u>e.g.</u> EV charging. <u>Critical</u>: loads required to be maintained during outages. Industry Tools: Clean Coalition: 		 Optimal solar, storage, and other potential onsite resources. Sizing and combinations to achieve the required critical load and economic outcomes. Industry Tools: 		 Specific locations & sizing for solar, storage, and any other viable resources. Location of key electrical assets e.g. panels, etc. Energy usage profiles including load profiles. 	 Costs and financing options covering each viable resource scenario. Added resilience value. Industry Tools: Energy Toolbase: economic analysis. Clean Coalition: 	 Project Review Meetings. Reports and Presentations. Recommended options & next steps.
load analysis calculators. • UtilityAPI: 15- minute load intervals.		 Helioscope: solar siting. Energy Toolbase: resource sizing. 		Clean Coalition: site layout tool.	resilience calculator (<u>e.g.</u> avoided diesel).	

Load Profiles

Making Clean Local Energy Accessible Now

Typical load tier resilience from Solar Microgrids

Clean Coalition

Percentage of time online for Tier 1, 2, and 3 loads for a Solar Microgrid designed for the University of California Santa Barbara (UCSB) with enough solar to achieve net zero and 200 kWh of energy storage per 100 kW solar.

Diesel generators are designed for limited resilience

Percentage of total load Tier 3 = Discretionary load, ~75% of total load Tier 2 - Priority load, ~15% of total load Critical, life-sustaining load, ~10% of total load

Percentage of time

A typical diesel generator is configured to maintain 25% of the normal load for two days. If diesel fuel cannot be resupplied within two days, these loads go off – hardly a solution for increasingly necessary longterm resilience. In California, Solar Microgrids provide a vastly superior trifecta of economic, environmental, and resilience benefits.

Clean Coalition

Load tiering based on plans & modifications

Clean 🛉
Coalition

		Electrical Panels and Loads		Watts (VA)	Percentage of Total Load	Percentage of T1 Load	Tier 1	Tier 2	Tier 3	
		Food SVC Module FS-1		29,952	5.25%		Х			
		Food SVC Module FS-2		27,248	4.78%			X		
			Refrigerator							
			Microwave (Prep -CTR RH)							
			Microwave (Prep - CTR LH)							
			Conven Outlet (Prep - LH)							
			General LTS & Vent Fan							
			Conven Outlet (Flex - Rear wall)							
			Campus Lighting (exerior)							
			Conven Outlet (exterior)							
		Food SVC Module FS-3	Microwave (Prep - LH)	12,272	2.15%	18.8%	x			
			Air Conditioning (x2)							Logond
			Conven Outlet (IT RM - LH wall)							Legenu
			Conven Outlet (IT RM - Entry & RH)							V: Close Coslition
			Conven Outlet (IT RM - Server I WR)	-						A. Clean Coantion
			Conven Outlet (IT RM - Server LIPR)							ahaing hasad an
			Conven Outlet (IT RM - Rear Wall)							choice based on
			Microwovo (Prop Aroa , PH)							
		Madula Lauradar	Microwave (Frep Area - Kri)	24.274	4.26%				v	prior experience
		Storage North		24,274	4.20%				×	
		Community Plda DNI		2,080	0.36%	12.1%	v		~	
		Madula 24/TE 11 Dathrooma		7,904	1.39%	12.1%	×			
		Module 24/15-1L - Bathrooms		6,448	1.13%	9.9%	X			x: DignityMoves
		Module 24/IS-1R - Bathrooms		6,448	1.13%					
		Module Restroom		5,616	0.98%	8.6%	X			original choice
		Intake/Security Lights		84	0.01%	0.1%	x			onginar enoice
		Exterior Lights		138	0.02%	0.2%	×			
	Falcon PNL A	Intake Reception Room		360	0.06%	0.6%	x			
CDP1		Security Rec		360	0.06%	0.6%	X			
		Packaged Terminal Air Conditioner (PTAC)		2,304	0.40%			х		
		Offices/Staff Break Lights		147	0.03%				х	
		Exterior Lights (3 brk rs)		345	0.06%	0.5%	x			
SB		Flex (multipurpose) Office Reception (3 brkrs)		2,160	0.38%				х	
		Staff Break Reception		540	0.09%			x		
		Nurse Medical Reception		720	0.13%			x		
	Ealcon BML B	Packaged Terminal Air Conditioner (PTAC)		9,216	1.62%				х	
	(North Support	Offices Lights		84	0.01%			х		
	(North Support	Offices/Nurse/Medical Lights		147	0.03%	0.2%	х			
	Services	IWH - 1 (2 units)		12,480	2.19%			х		
		Medical Fridge		1,200	0.21%	1.8%	x			
		Refrigerator		1,200	0.21%			х		
		Disposal		1,200	0.21%				х	
		Coffee Maker		1,200	0.21%				х	
		Microwave		1,200	0.21%			x		
		Offices/Meeting Lights		147	0.03%			х		
		Exterior Lights		483	0.08%	0.7%		x		
		Flex (multipurpose) Office Reception		2,160	0.38%				х	
		Meeting Reception Room		1,440	0.25%				х	
		Lounge Reception (Family room for managing families)		1.080	0.19%			x		
	Falcon PNL C	Microwave		1.200	0.21%				x	
	(South Support	Coffee Maker		1.200	0.21%				x	
	Services)	IWH-1		6 240	1.09%			x		
		Disposal		864	0.15%			<u> </u>	x	
		Office Lights		84	0.01%			×		
		Lounge /Offices/Meeting Lights		273	0.05%			Ŷ		
		Packaged Terminal Air Conditioner (PTAC)		11.520	2.02%			Â	x	
		Module Panel - Single Family Unit 1 7		35,360	6.20%				x	
		Module Panel - Two Family Unit 2, 3, 4, 5, 6		95.470	16 74%				x	
		Electrical Vehicle Charging Station - 1 2		13 312	2 32%				Ŷ	
	RDP1	Pecention - Main Service Area		180	0.03%	0.3%	Y		^	
		Storage South		8 320	1.46%	0.370	^		Y	
		Darking Lot Lights		0,320	0.04%	0.49/	v		^	
	082	4 Pod Upit 1 2 2 4 5 6 7 9 0 10 11	+	23/	0.04%	0.4%	~		v	
	DP2	4 Deu Uill 1,2,3,4,3,0,7,0,9,10,11		110,088	20.46%				X	
	DP3	4 Deu Unit 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22	1	110,688	20.46%	1			X	

Making Clean Local Energy Accessible Now

Resource Scenarios and Site Layout

DignityMoves SM – Battery sizing (2 BESS) with solar on Boss Cubez units

DignityMoves Santa Maria - On-Grid HomeGrid Battery Energy Storage Sizing, System Cost, and Resilience												
		Recommended Ba	attery System Size	Battery Sy	/stem Cost	Indefinite Resilience						
Baseline Load Profile Peak Demand (kW)	Solar System Size (kW)	Standard Option Battery Power Capacity (kW)	Standard Option Battery Energy Capacity (kWh)	Total Battery Energy Storage System Cost	Battery Energy Storage System Cost per kWh	Total Percentage of Load Kept Online Indefinitely (Year 1)	Total Percentage of Load Kept Online Indefinitely (Year 15 - before replacement)					
41	86.4	150	307	\$269,717	\$878	40.0%	35.0%					

The total annual energy gap is 22,159 kWh. When on-grid, this energy gap is supplied by the grid. When off-grid, this energy gap would require 1,773 gallons of diesel fuel for 1 year – see diesel generator details in next slide.

For mid-March through October, solar and storage should be enough to cover 100% of the site's electrical load, except for the following three days:

- Date 22 March (67 kWh)
- Date 7 September (20 kWh)
- Date 14 October (8 kWh)

Making Clean Local Energy Accessible Now

DignityMoves SM – example solar layout with 86 kWdc (114% NZE) via 216 (400W) solar panels

DignityMoves Santa Maria - Boss Cubez Total Solar Siting Potential											
Solar Siting by Location	Baseline Annual Load (kWh)	Solar System Size (kWdc)	Number of 400W Qcells Panels	Annual Solar Generation (kWh)	Solar Siting Potential as a Percentage of Net Zero						
(29) Cube 144 - 2 rooms each for residences & offices	Not Calculated	46	116	74,702	61%						
(16) Cube 170 - 2 rooms each for couples/ADA residences	Not Calculated	32	80	51,519	42%						
(2) Cube 288 - 1 room each for dining & flex	Not Calculated	6	16	10,304	8%						
(1) Cube 144 - 1 room for clinic	Not Calculated	2	4	2,576	2%						
Total	121,899	86	216	139,100	114%						

Making Clean Local Energy Accessible Now

DignityMoves SM – System diagram

DignityMoves SM – solar layout

Making Clean Local Energy Accessible Now

DignityMoves SM – solar layout

DignityMoves SM – diesel generator sizing and cost – Off-Grid only

DignityMoves Santa Maria - Diesel Sizing and Resilience												
Annual Load (kWh)	Total 1-Year Energy Gap (kWh)	Diesel Required for 1-Year Energy Gap (gallons)	Max Daily Fuel Needed (gallons)	Average Daily Fuel Needed (gallons)	Diesel Genset Size (kW)	Genset Tank Capacity (gallons)						
121,899	22,159	1,773	34	13	60	146						

Diesel Generator Estimated System Cost & O&M - 60 kW / 146 gallons								
Company	Diesel Generator Scope of Work	Costs						
Diesel Generator Supplier	Generator and Fuel Tank - Total Equipment Cost	\$55,514						
Diesel Generator Supplier	Tax and Shipping	\$4,608						
Diesel Generator Supplier	Generator Maintenance (\$/Year)	\$2,600						
Diesel Generator Supplier	Fuel Cost (\$/Year) for energy gap of 22,159 kWh	\$11,523						
	Total	\$74,245						

* NOTE: the diesel fuel cost covers a maximum of 1 year, as the projected energy gap for that timeframe.

DIMENSIONS AND WEIGHTS*

Diesel Generator dimensions with trailer: 14.2 x 5.8 x 6.7 ft.

Economic Analysis

DignityMoves SM – Breakdown of PV and battery system costs (2 BESS)

DignityMoves Santa Maria - Off-Grid System Costs								
Solar System Size - 86.4 kWdc								
Company	Solar Scope of Work	Costs						
Sun Pacific Solar Electric	Solar Panels and Installation	\$238,000						
	Solar Cost per Wdc	\$2.75						
Battery E	nergy Storage System - 150 kW / 307.2 kWh							
Company	Battery Scope of Work	Costs						
HomeGrid	Shipping	\$2,709						
HomeGrid	Batteries	\$133,168						
HomeGrid	Containers with 3 Sol-Ark Inverters	\$71,840						
Sun Pacific Solar Electric	Permitting	\$3,000						
Sun Pacific Solar Electric	Site Prep	\$25,000						
Sun Pacific Solar Electric	Battery Installation	\$4,000						
Sun Pacific Solar Electric	Schneider Smart Main Service Board	\$30,000						
	Total	\$269,717						
	Battery Energy Storage System Cost Per kWh	\$878						
	Grand Total	\$507,717						

DignityMoves Santa Maria - Annual System Operations and Maintenance (O&M)								
Company	Company O&M Scope of Work							
Sun Pacific Solar Electric	Battery Remote Review and Testing	\$5,000						
Sun Pacific Solar Electric	Solar Panel Cleaning	\$1,800						
	Total	\$6,800						
	Cost Per Wdc	\$0.0787						

DignityMoves SM – 25 Year Solar Microgrid cash purchase key economic details (2 BESS)

DignityMoves Santa Maria - 25 Year Cash Purchase Economic Details													
Annual Electri	Annual Electricity		Solar Mici	ogrid Cash Purchas	e - 25 Year Costs an	nd Savings		Value of Resilience					
Facility	Bill Cost (Pre- Solar Microgrid)	Capital Expenditure (Capex)	Operational Expenditure (Opex)	Incentives	Net Total Project Cost	Cumulative Utility Bill Savings	Net Cumulative Savings	25 Year Value					
Santa Maria	\$35,215	(\$507,317)	(\$424,676)	\$253,659	(\$678,334)	\$1,163,713	\$485,379	\$320,978					

• Uses the scenario of 68.4 kW of solar and 150 kW / 307 kWh of energy storage

• Cash purchase economics use a 3% annual utility escalator, 30% ITC Direct Pay with a 20% low-income community & economic benefit project adders.

DignityMoves SM – 25 Year fixed PPA key economic details (2 BESS)

DignityMoves Santa Maria - 25 Year PPA Economic Details											
Facility	Annual Electricity		Solar Microgrid 23¢/kWh PPA - 25 Year Costs and Savings								
Facility	Solar Microgrid)	Average Monthly PPA Payment	25 Year Total PPA Payments	Cumulative Utility Bill Savings	Net Cumulative Savings	Year 1 Savings	25 Year Value				
Santa Maria	\$35,215	(\$2,504)	(\$751,187)	\$1,163,713	\$412,526	\$2,339	\$320,978				

• Uses the scenario of 68.4 kW of solar, and 150 kW / 307 kWh of energy storage.

Additional Resource Scenarios

Making Clean Local Energy Accessible Now

DignityMoves SM – Battery sizing (2 BESS) with solar on Boss Cubez units – <u>Excess solar</u>

DignityMoves Santa Maria - On-Grid HomeGrid Battery Energy Storage Sizing, System Cost, and Resilience												
		Recommended Battery System Size		Battery System Cost		Indefinite Resilience						
Baseline Load Profile Peak Demand (kW)	Solar System Size (kW)	Standard Option Battery Power Capacity (kW)	Standard Option Battery Energy Capacity (kWh)	Total Battery Energy Storage System Cost	Battery Energy Storage System Cost per kWh	Total Percentage of Load Kept Online Indefinitely (Year 1)	Total Percentage of Load Kept Online Indefinitely (Year 15 - before replacement)					
41	86.4	150	307	\$269,717	\$878	40.0%	35.0%					

DignityMoves SM – Battery sizing for on-grid (1 BESS) with solar on Boss Cubez units

DignityMoves Santa Maria - On-Grid HomeGrid Battery Energy Storage Sizing, System Cost, and Resilience											
Baseline Load Profile Peak Demand (kW)	Solar System Size (kW)	Recommended Battery System Size		Battery System Cost		Indefinite Resilience					
		Standard Option Battery Power Capacity (kW)	Standard Option Battery Energy Capacity (kWh)	Total Battery Energy Storage System Cost	Battery Energy Storage System Cost per kWh	Total Percentage of Load Kept Online Indefinitely (Year 1)	Total Percentage of Load Kept Online Indefinitely (Year 15 - before replacement)				
41	86.4	75	154	\$167,213	\$1,089	28.0%	23.0%				

Making Clean Local Energy Accessible Now
DignityMoves SM – Battery sizing for off-grid (4 BESS) with solar on Boss Cubez and LifeArk units

DignityMoves Santa Maria - Off-Grid HomeGrid Battery Energy Storage Sizing, System Cost, and Resilience with Boss Cubz and LifeArk Units							
Baseline Load Profile Peak Demand (kW)	Solar System Size (kW)	Recommended Battery System Size		Battery System Cost		Indefinite Resilience	
		Standard Option Battery Power Capacity (kW)	Standard Option Battery Energy Capacity (kWh)	Total Battery Energy Storage System Cost	Battery Energy Storage System Cost per kWh	Total Percentage of Load Kept Online Indefinitely (Year 1)	Total Percentage of Load Kept Online Indefinitely (Year 15 - before replacement)
41	110.4	300	614	\$474,724	\$773	56.0%	54.0%

Making Clean Local Energy Accessible Now