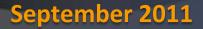
Making the Best Use of Incentive Dollars for Distributed Wind State Policies Driving Growth

Trudy Forsyth, Heather Rhoads-Weaver & Matt Gagne

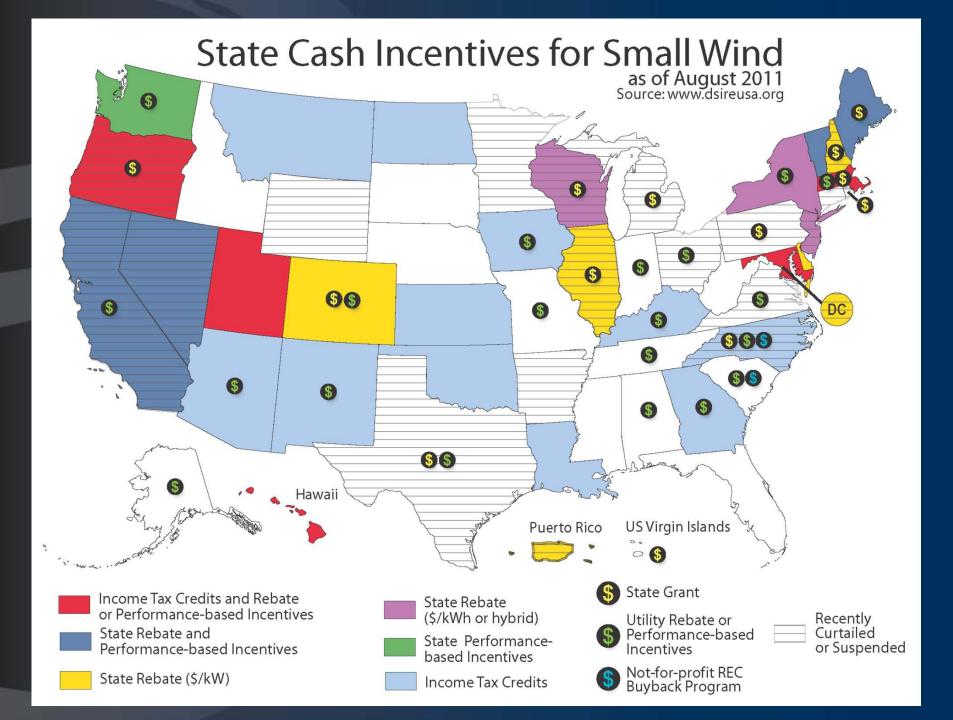

U.S. DOE Award DE EE0000503 Team Members: Tony Jimenez, NREL; Alice Orrell, PNNL; Jen Banks, Amanda Vanega & Laurel Varnado, NCSC; Kurt Sahl & Peter Asmus, EFO

CESA Member Webinar

Power through Policy *Improving the Bottom Line*

- "20% by 2030" grant-funded project supporting DOE goals
- Policy Comparison Tool & Guidebook show cost-effectiveness of incentives
- Users only need to select 2 inputs:
 State & ownership sector
- Model then populates with default values based on inputs
 - DSIRE quantitative policy data feed
 - Defaults can be adjusted on dashboard
- Designed for analysis of policies, "what if" scenarios
 - Not project-specific, not a siting tool!

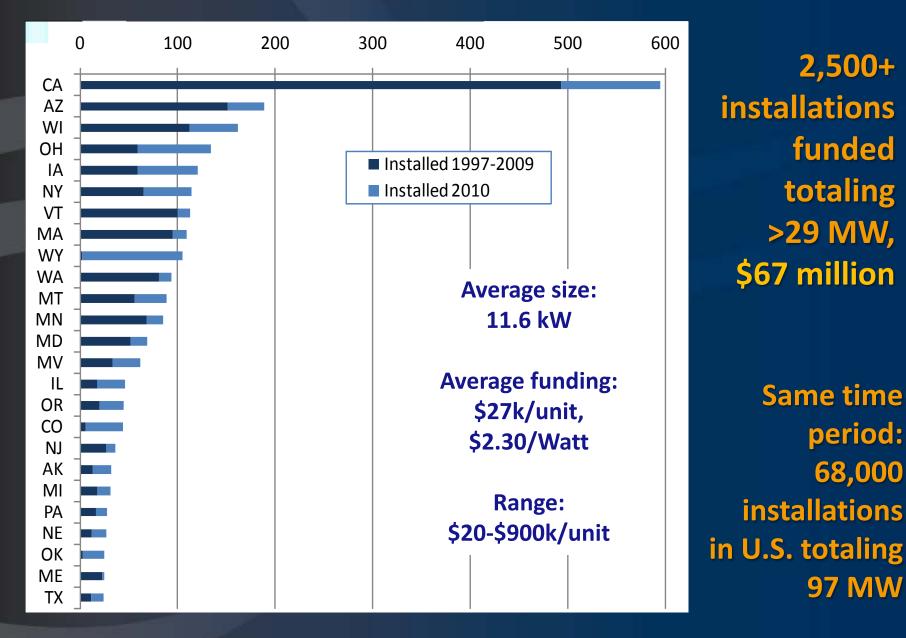
Energy Efficiency & Renewable Energy

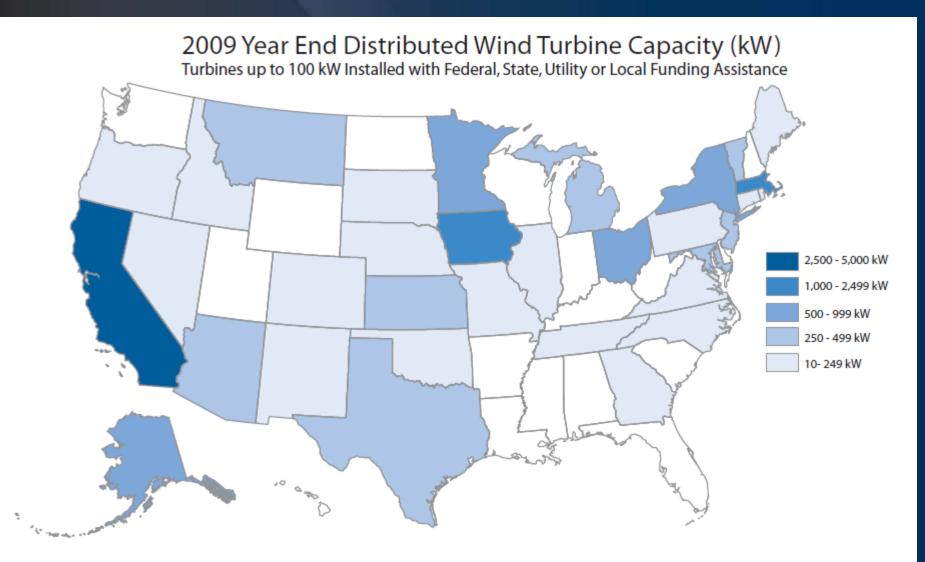


Small Wind Incentives: A Shifting Landscape

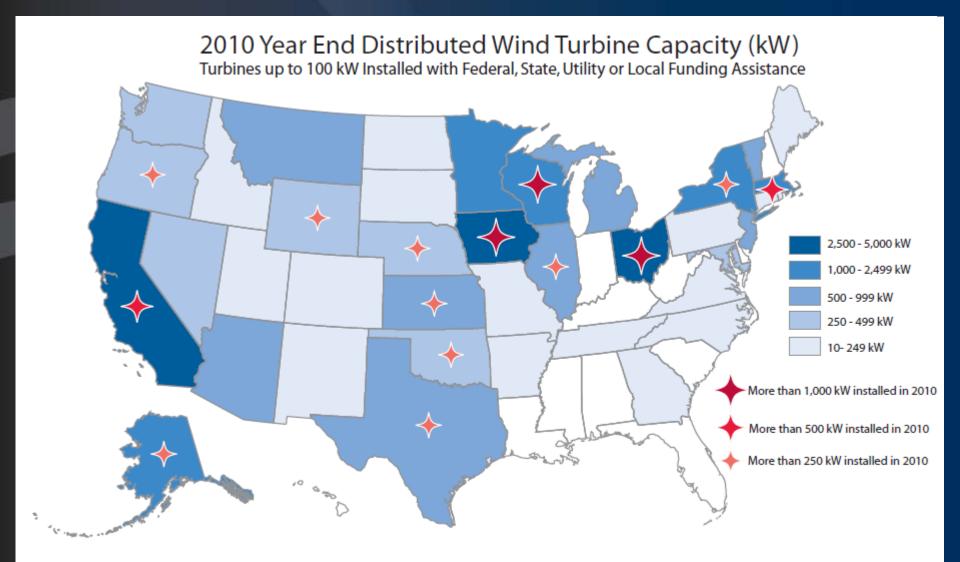
Incentive	1999	Now
States w/ Rebates	2	16 (2 on hold)
States w/ Tax Incentives	24	17 (tax credits) 25 (sales/property)
Performance-Based Cash Incentives	0	6
Net Metering	27	43 (14 statewide, 19 IOUs only)
Total # of States with Incentives	32 (7 net metering only)	45 (13 net metering only)
21 states have curtailed or suspended small wind incentives since peak in 2010		

Policies Improving, but Still Need Work *Recent & Ongoing Developments: States to Watch*



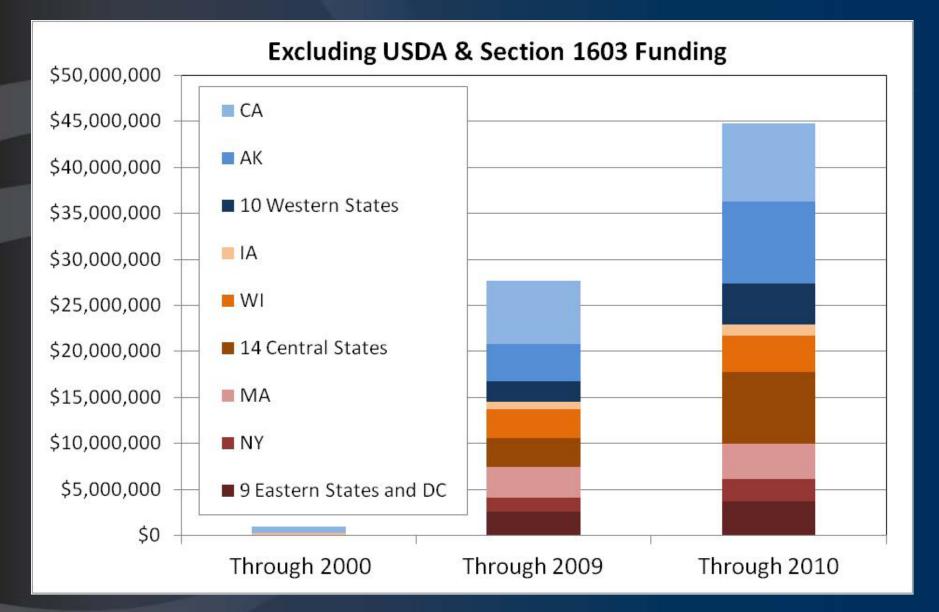


Small Wind Turbines Installed with Funding Assistance

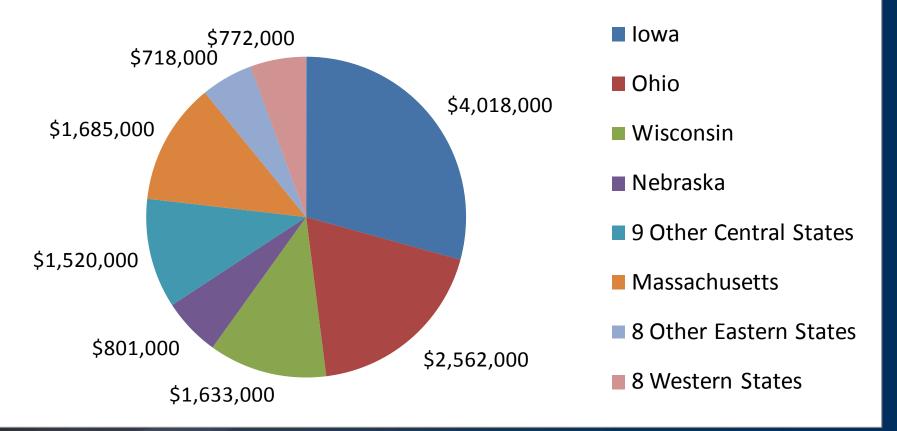


Small Wind Installed with Funding Assistance as of 2009

1,470 distributed wind turbines installed with \$31.7 million in funding assistance totaling 14.2 MW as of 12/31/2009 source: eFormative Options


Small Wind Installed with Funding Assistance as of 2009

2,360 distributed wind turbines installed with \$62.2 million in funding assistance totaling 26.6 MW as of 12/31/2010


source: eFormative Options

Small Wind State, Utility, and Local Funding by Region

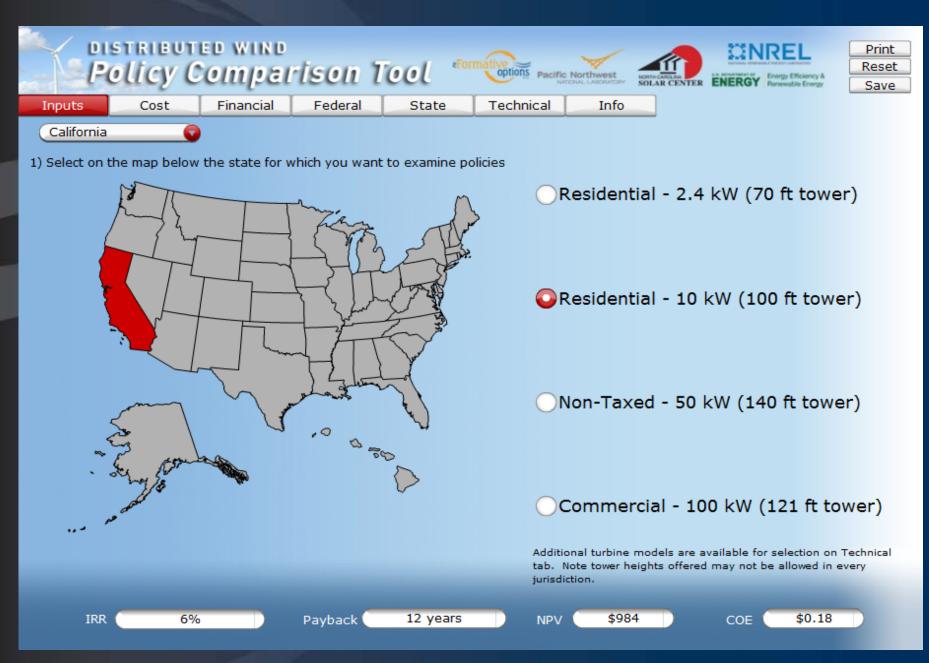
Small Wind Federal Funding by Region \$13.7 million, approx 7 MW

2010 USDA REAP & Section 1603 Grants for Small Wind Turbines

Making the Best Use of Incentive Dollars for Distributed Wind Assumptions Behind the Logic

Heather Rhoads-Weaver

CESA Member Webinar


September 2011

Policy Comparison Tool

- Using default values and pre-determined inputs, calculates:
 - Cost of Energy (COE)
 - Project Net Present Value (NPV)
 - Project Internal Rate of Return (IRR)
 - Simple Payback (years)
- Inputs Turbines
 - 8 manufacturers
 - 9 turbines
 - 14 options

www.windpolicytool.org

www.windpolicytool.org

Policy Comparison Tool

THIS IS A POLICY MODEL, DESIGNED TO HELP QUANTIFY POLICY DECISIONS

NOT MEANT TO BE A PROJECT DEVELOPMENT OR FINANCIAL DECISION-MAKING TOOL

Four Main Categories of Assumptions Turbine and market sectors

Incentives

Grants Tower heights Federal incentives Power cur State tax incentives Income tax Incentives Property tax incentives Sales tax incentives State rebates, including performancebased incentives (PBIs) Renewable Portfolio Standards and Renewable Energy Credits Feed-in Tariffs Tax implications of incentives

Turbine selection Market sector selection Estimated turbine installation costs Annual operating and maintenance costs Wind resource classes Tower heights Power curves **Regulatory policy**

> Net metering and avoided cost payments Interconnection Zoning Market factors

Financing Escalation Rates Discount rates Other state-specific issues

Policy Comparison Tool

Wind Turbine Defaults

Residential: 2.4 kW Skystream, 70 ft. guyed monopole

Residential/Farm: 10 kW Bergey Excel, 100 ft. free-standing lattice tower

Non-Taxed: 50 kW Endurance E3120, 140 ft. free-standing lattice tower

Commercial: 100 kW Northwind 100, 121 ft. free-standing monopole

Turbine **power curves** were manufacturer-supplied, tested and verified by NREL, or third-party verified

The Policy Tool limits wind class options to Low and Mid Class 2 (average 5.1 – 5.5 m/s at 30 m hub height), Low and Mid Class 3 (average 5.8 –6.1 m/s at 30 m) and Low Class 4 (average 6.4 m/s at 30 m)

Federal Incentives

Residential

Residential Renewable Energy Tax Credit

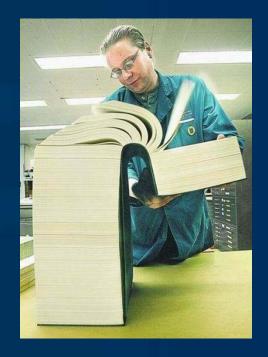
Commercial

- Business Energy Investment Tax Credit (ITC)
- Modified Accelerated Cost-Recovery System (MACRS) depreciation
- U.S. Department of Treasury Payments for Specified Energy Property in Lieu of Tax Credits (also known as the Section 1603 Grant Program)

State Financial Incentives

Included

- Sales Tax and Sales Tax Incentives
- Production Tax Credits
- Income Tax Credits and Deductions
- Rebates that are mandated by state policy or programs
- REC price for Commercial & Non-Taxed sectors (higher for RPS states)
- Tax implications of incentives
- Feed-in tariff option


Not Included

- Property Tax Incentives
- Competitive state grants
- Utility Rebates
- RPS credit multipliers

Regulatory Policies

- Statewide net metering is the default if IOUs, Publics and Co-ops are all required to net meter (16 states have statewide net metering)
- For states without net metering, or for which net metering policies only apply to certain utilities, the Policy Tool assumes kWhs would be valued at the avoided-cost rate from the utility (estimated at 41% of retail value)

- Interconnection Fees followed the FERC SGIP Structure (+ est. \$200 for UEDS): \$300 for systems 10 kW and smaller; \$700 for systems 11-20 kW; \$1,500 for 50 kW systems; and \$6,000 for 100 kW systems
- Zoning and Permitting: \$300-\$2500 default, depending on turbine

Market Factors

Financing

 Tool defaults to 100% upfront investment, but user can model partial financing options

Escalation Rate

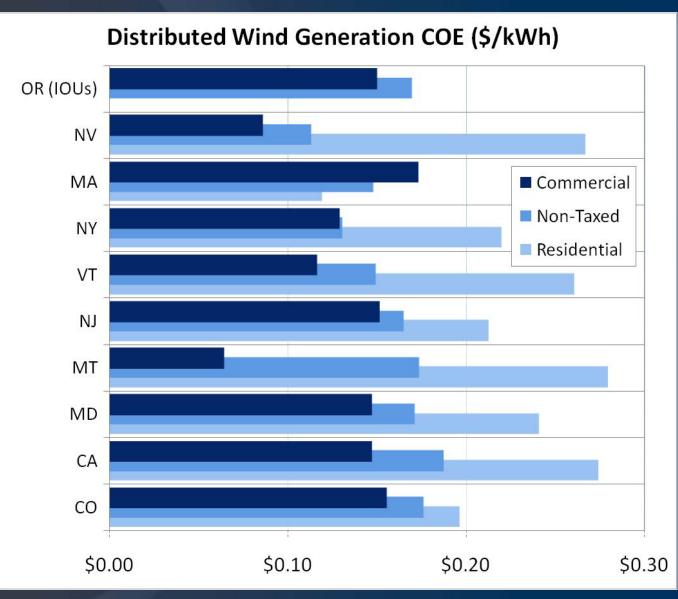
 Applied to O&M costs and Electricity Prices (e.g. Tool predicts O&M costs will increase 1.8% each year and electricity prices will increase 2.2% each year for Residential Sector)

Discount Rates

6% for Residential, 7% for Commercial, 5% for Non-Taxed Sector

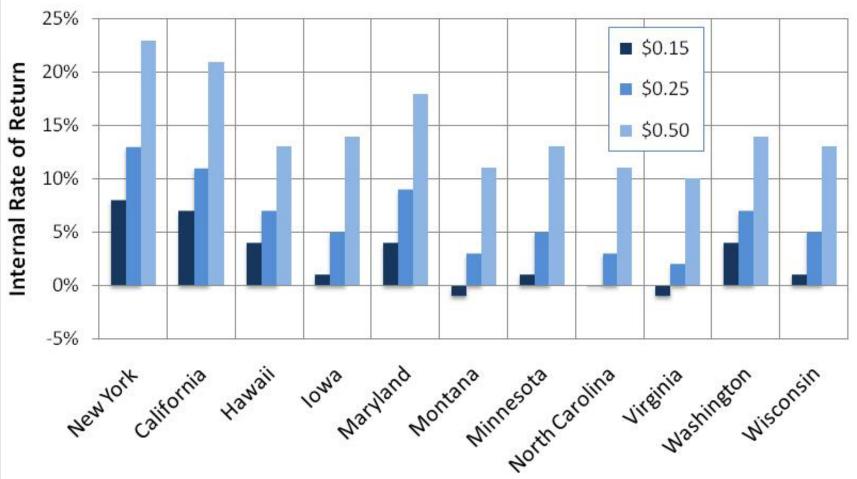
Making the Best Use of Incentive Dollars for Distributed Wind Policy Comparison Tool Demo, Case Studies

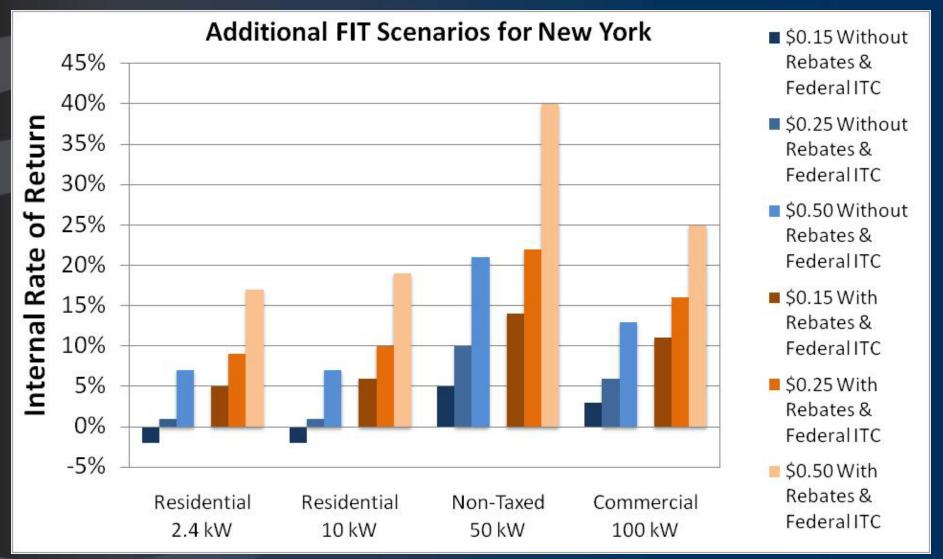
Matt Gagne



CESA Member Webinar

September 2011


State Ranking by Net Cost of Energy


Average COE results of base case scenarios, policies and incentives as of 4/2011

Select IRR Results of Modeling FIT Rates, Residential Sector

FIT Scenarios

Comparison of Case Study Results With and Without Rebates and Federal ITC

Tower Heights Case Study - Wisconsin

Focus on Energy Rebate

- Only turbines 20 kW or less on towers of 100 feet or more qualify
- Rebate amount varies
 - Tower height
 - Turbine's expected annual generation

Policy model example

- 20 kW Jacobs 31-20 turbine on 100 foot tower
- 20 kW Jacobs 31-20 turbine on 120 foot tower

Tower Heights Case Study - Wisconsin

Wisconsin Focus on Energy Rebate Amounts

Turbine	COE	Rebate Amount
20 kW - 31-20 Jacobs - 100 ft tower	\$0.31	\$8,579
20 kW - 31-20 Jacobs - 120 ft tower	\$0.17	\$15,319

Policy Comparison Tool

Production-Based Incentive Case Study – New York

3-tiered incentive program

- 0-10,000 kWh produced
- 10,000 kWh 115,000 kWh
- 115,000 kWh 125,000 kWh

Policy model example

- 50 kW E3120 on 120 foot tower
- 50 kW E3120 on 140 foot tower

Tower heights important permitting consideration

- Project feasibility
- Project economics

Policy Comparison Tool

Production-Based Incentive Case Study – New York

Project Economics for a Commercial Sector 50 kW Turbine in New York

Sector and Turbine	Wind Resource	Hub Height	COE	NPV	IRR	Simple Payback (years)	Rebate Amount
NY Commercial 50 kW	Mid Class 2	120 ft	\$0.10	(\$20,125)	5%	11	\$152,826
NY Commercial 50 kW	Mid Class 2	140 ft	\$0.08	\$7,442	8%	9	\$155,646

Optimal Policy Combination Case Study

- Kansas chosen due to minimal policies in place
- Base case compared to various policy scenarios

NYSERDA "On-Site Small Wind Incentive Program"

50% of installed cost of a wind system up to a max of \$400,000

Production-based incentive

- First 10,000 kWh of expected annual energy production: \$3.50/annual kWh
- Next 115,000 kWh of expected annual energy production: \$1.00/annual kWh
- Energy production greater than 125,000 kWh: \$0.30/annual kWh

Kansas Base Case Scenario for Commercial Sector 100 kW Turbine vs. Alternate Inputs

	Base Case	With \$1 interconnection cost	With \$1 zoning cost	With state- wide net metering	With a \$163,468 rebate
COE	\$0.13	\$0.13	\$0.13	\$0.13	\$0.09
NPV	(\$233,188)	(\$227,189)	(\$230,689)	(\$97,483)	(\$127,370)
IRR	-5%	-5%	-5%	3%	-1%
Payback	More than 20	More than 20	More than 20	15 years	More than 20

Policy Comparison Tool

Kansas Base Case Scenario for Commercial Sector 100 kW Turbine vs. Optimized Policy Combination

	Base Case	With \$1 interconnection cost, \$1 zoning cost, state-wide net metering and \$163,468 rebate
COE	\$0.13	\$0.09
NPV	(\$233,188)	\$16,833
IRR	-5%	8%
Payback	More than 20	9

Next Steps: Enhancements & Outreach

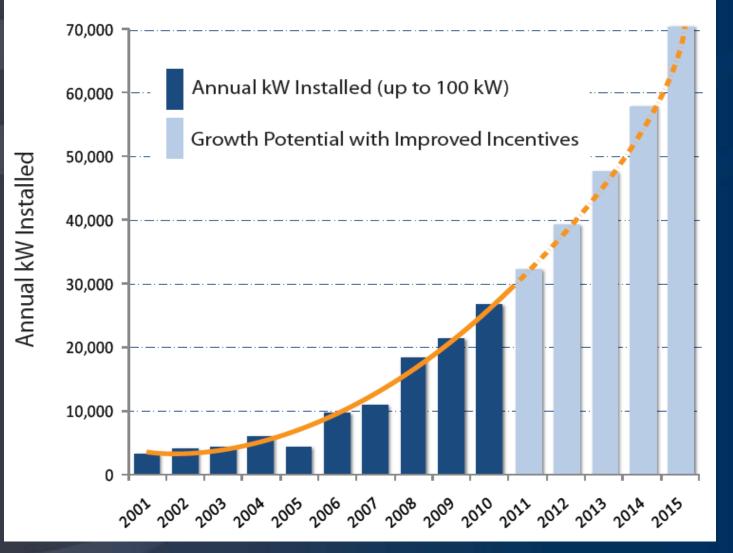
- Allow users to adjust annual estimated production
 Ensure ongoing maintenance and updates

 Enable automated interface with DSIRE, utility rates, etc.
- Incorporate wind map data/site assessment
- Offer video guide, tailored webinars

Expansion of Tool

Add additional turbine & tower options, cover "midsized" sector up to 1 MW

Next Steps: Expansion of Tool


- Incorporate costs for environmental evaluations and other make-or-break factors
 - Additional review of zoning restrictions, "real options" analysis
- Enable macro analysis of cumulative impacts on electricity rates such as from high uptake levels
- Build out DSIRE with more utility-specific and countyspecific policies
- Enable review of more complex financing scenarios
- Create option that factors in probability of success for grants

Next Steps: Further Analysis

- Enable more nuanced view of net metering and load/generation profile overlap
- Create case studies on real world turbine installations, actual costs and incentives
- Optimize leasing scenario
- Conduct analysis on long-term nature and price stability of RECs
- Contrast state ranking results with market sales data, use Tool to estimate total value of incentives

Expanded Incentives Key to Market Growth

US Small Wind Turbines

Sources: AWEA & EFO

Market Analysis

- Economic impacts
- Data collection/research

Development Consulting

- Launching new ventures
- Grantwriting

Public Affairs

- Community outreach
- Turnout for hearings

Project Management

- Strategic planning
- Facilitation, consensus

Heather Rhoads-Weaver

www.eformativeoptions.com

Special Thanks to

- Brian Miles & Maureen Quinlan, NCSC
- Larry Sherwood, IREC
- Charles Kubert, CESA
- James Jensen & Rich Stomberg, AEA
- James Lee, CEC
- Wayne Hartel & Gabriela Martin, IL
- Dick Fortier, Maine
- Andrew Gohn & Joe Cohen, MD
- Pete McPhee, Andy Brydges & Tyler Leeds, MassCEC
- John Campbell & Danie Williams, NEW
- Kathi Montgomery, MT
- Dave Ryan, NCAT
- Keith Kutz, IEC

Data collectors: 3 dozen and growing!

- John Hargrove, Corie Cheeseman, Sean Sever, Robert Nelllis, Tara Lynch & Jeff Healion, NV
- Alma Rivera, NJ
- Mark Mayhew & Allison Capello, NYSERDA
- Preston Boone & Manny Anunike, OH
- Erin Johnston, Darrin Kite & Aeron Teverbaugh, OR
- Erika Myers, SC
- Gabrielle Stebbens, VEIC
- Rich Hasselman & Mick Sagrillo, WI FOE
- Phil Lou, WSU

