Cimarron District Office: Supporting Firefighters in New Mexico with Solar+Storage

September 17, 2019
Join audio:
• Choose Mic & Speakers to use VoIP
• Choose Telephone and dial using the information provided

Use the orange arrow to open and close your control panel

Submit questions and comments via the Questions panel

This webinar is being recorded. We will email you a webinar recording within 48 hours. CEG’s webinars are archived at www.cleanegroup.org/webinars
THE RESILIENT POWER PROJECT

• Increase public/private investment in clean, resilient power systems (solar+storage)
• Protect low-income and vulnerable communities, with a focus on affordable housing and critical public facilities
• Engage city, state and federal policy makers to develop supportive policies and programs
• Visit www.resilient-power.org for more information and resources
SUPPORTING 150+ PROJECTS ACROSS THE COUNTRY

- **Boulder**: Nonprofit transportation center serving elderly and disabled residents
- **Puerto Rico**: Supporting the installation of solar+storage at multiple community medical clinics
- **Boston**: Multiple housing properties representing 1,000+ units of senior and affordable housing
- **New Mexico**: Added resilience for remote wildfire operations command center
- **DC**: First solar+storage resilience center at affordable housing in DC
- **Puerto Rico**: Supporting the installation of solar+storage at multiple community medical clinics
Webinar Speakers

• **Louise N. Martinez**, Division Director, Energy Conservation and Management Division of New Mexico

• **Mark Gaiser**, Clean Energy Program Manager, Energy Conservation and Management Division of New Mexico

• **Arnie Friedt**, Cimarron District Forester, EMNRD, Forestry Division

• **Seth Mullendore**, Vice President & Project Director, Clean Energy Group (moderator)
Cimarron District Office: Supporting FireFighters in New Mexico with Solar + Storage

LOUISE N. MARTINEZ, DIVISION DIRECTOR, ENERGY CONSERVATION AND MANAGEMENT DIVISION OF NEW MEXICO

MARK GAISER, CLEAN ENERGY PROGRAM MANAGER, ENERGY CONSERVATION AND MANAGEMENT DIVISION OF NEW MEXICO

ARNIE FRIEDT, CIMARRON DISTRICT FORESTER, NM EMNRD, FORESTRY DIVISION

SETH MULLENDORE, VICE PRESIDENT AND PROJECT DIRECTOR, CLEAN ENERGY GROUP

Clean Energy Group Webinar, September 17, 2019
Ute Park Fire
May 31, 2018

The first day

- Photo from US Forest Service Air Attack aircraft
Ute Park Fire
June 3, 2018
The fourth day

Burned 36,740 acres, Destroyed 14 buildings on Philmont Scout Ranch

On June 3 the resources fighting the fire were:
13 Crews of 498 personnel
8 Helicopters
19 Fire Engines
2 Bulldozers
6 Water tenders

District office is on generator power

Fire contained on June 19, 2018
Ute Park Fire from Porch of Cimarron Forestry District Office
Late Summer 2018 in Santa Fe

- Initial discussions at ECMD occurred about how to improve power and resiliency at the Cimarron Forestry District Office
 - Reduce computer failures and replacements due to poor power quality
 - Ensure power would be available even if the power lines failed
 - Improve the resiliency of the site through solar power in conjunction with the back-up generation
 - The need was urgent because of the severe drought in New Mexico

- In mid-August, Jeremy Lewis, Bureau Chief for NM Energy, Conservation and Management Division asked Seth Mullendore of the Clean Energy Group about the potential to have an analysis performed that would guide the development of a solar plus storage microgrid that would increase the reliability and resiliency of the energy supply for the Cimarron Forestry District Office.

- Potential funding means for the project were put together by the ECMD Director and the Forestry Office Director, with a project completion date of June 30, 2019
Two office buildings
Two shop buildings
One on-site living quarters (since removed)
Helipad
At end of Kit Carson Electric Coop 15kV radial feeder line ~ 55 miles long
Located on US 64 east of Ute Park and the entrance to the Philmont Scout Ranch
Project Takes Form
Nine months to completion

Project scope
Define system operational goals for various operational scenarios - September 2018

Gather information
Document past energy consumption, site information, site layout and existing equipment - September 2018

Submit information
American MicroGrid Solutions receives information along with contract for analysis from Clean Energy Group
Project Definition
Eight months to completion

AMS drafts analysis
Draft analysis ready
October 2018

Final System Analysis
AMS releases analysis using New Mexico State pricing agreement
November 2018

Review Analysis
Provide AMS analysis report to external groups for review.
December 2018
AMS provides matrix of goals based upon inputs from New Mexico.

Cimarron Resilient Power Goals

<table>
<thead>
<tr>
<th>Mode</th>
<th>Operational</th>
<th>Financial</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Provide continuous power to all facility loads</td>
<td>• Reduce utility cost</td>
<td>• Reduce carbon emissions from generating and delivering energy to serve facility</td>
</tr>
<tr>
<td></td>
<td>• When facility becomes Command Center, serve surge loads of additional users and longer hours</td>
<td>• Reduce cost of replacing damaged equipment due to power quality issues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Support power quality (no dips, sags, brownouts, flickers)</td>
<td>• Meet capital budget requirement (~100K)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Minimize hands-on operational requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Provide remote system monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outage Mode</td>
<td>• Provide power to Critical Load (=100% of normal load) during an extended outage up to 72 hours</td>
<td>• Optimize cost to serve critical load</td>
<td>• Support facility mission to protect and preserve the regional environment</td>
</tr>
<tr>
<td></td>
<td>• Hedge fuel supply risk with supplemental generation to propane unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Minimize hands-on operational requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Provide remote system monitoring</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resilient Power operates in two conditions: Normal Mode (>99.9% of time on average) and Outage or “Island” Mode.
Resilient Power Objectives

- **Power Quality**: Facility operators report power quality issues which contribute to premature failure of electronic equipment.

- **Reliability**: While the site experiences a reported 2 to 3 power outages per year, the brownouts are an operational threat, particularly during forest fires or extreme weather events.

- **Power Resilience**: Facility operators seek to operate in both Normal and Outage modes with uninterrupted power to certain loads (computers, etc.) but do not require instantaneous failover.

- **Financial**: While utility cost savings is important, the primary financial goal is a system within available capital budget constraints (~$100K).

- **Fuel Supply Risk**: The legacy 20kW propane generator has a 500 gallon tank. The delivery route is generally reliable, but closed 1-2 days per year adding 6-8 hour delays.

- **Operational Ease**: With a limited staff and training in power system operations, Cimarron seeks a solution that minimizes hands-on requirements (“It should be invisible”).

- **Remote system monitoring**: As this facility has variable staffing level, Cimarron seeks to monitor system status in real-time remotely.
Cases Analyzed

To produce the analysis, we evaluated several cases with different combinations of generation and storage assets

- **Base Case:** Utility + Generator
- **Solar Only:** Utility + Solar PV (grid-tied) + Generator
- **Resilient Power\(_1\):** Utility + Solar PV + Battery 1x (AC coupled) + Generator
- **Resilient Power\(_2\):** Utility + Solar PV + Battery 2x (AC coupled) + Generator
- **Full-Site Double-Conversion UPS:** Utility + Solar PV + Battery (AC coupled) + Generator
- **Power Quality Correction:** Power conditioning addressed independent of Resilient Power solution as it is required in all scenarios. Note: Power Quality Correction may vary with the solutions above.
Selected Option

Option 2: PV and Battery (AC coupled)

- **System:**
 - Ground-mount solar PV AC-tied near meter
 - Battery storage grid-tied near meter

- **Pros:**
 - Islanding includes solar (when available)
 - Common and reliable installation and components
 - Systemwide PV and battery power

- **Cons:**
 - Well pump, HVAC units and compressors may need inrush current limiters
 - May still require power quality correction
 - Large electric loads like heaters may need to be put on a non-backup circuit (or lightly used when in Island Mode)
<table>
<thead>
<tr>
<th></th>
<th>Base Case</th>
<th>Solar Only</th>
<th>Resilient Power<sub>1</sub></th>
<th>Resilient Power<sub>2</sub></th>
<th>Double-Conversion UPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar PV sizing</td>
<td>NA</td>
<td>9.7 kW</td>
<td>9.7 kW</td>
<td>9.7 kW</td>
<td>9.7 kW</td>
</tr>
<tr>
<td>Battery sizing</td>
<td>NA</td>
<td>NA</td>
<td>8 kW/16 kWh</td>
<td>16 kW/32 kWh</td>
<td>16 kW/48 kWh</td>
</tr>
<tr>
<td>Generator sizing</td>
<td>20 kW propane</td>
</tr>
<tr>
<td>Resilience Hours (with generator)</td>
<td>72 hours</td>
<td>72 hours</td>
<td>72 hours</td>
<td>72 hours</td>
<td>72 hours</td>
</tr>
<tr>
<td>Average Additional Resilience Hours</td>
<td>0 hours</td>
<td>0 hours*</td>
<td>8.3 hours</td>
<td>17 hours</td>
<td>24 hours</td>
</tr>
<tr>
<td>(solar + storage only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar Penetration (Percentage of</td>
<td>0%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>annual load offset by solar PV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>generation on site)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Est. Capital Cost (ROM)</td>
<td>$0</td>
<td>$38,800</td>
<td>$54,800</td>
<td>$70,800</td>
<td>$119,800</td>
</tr>
</tbody>
</table>

* - Depending on the configuration of the solar array, it may produce incremental resilience during an outage. This varies considerably with weather, time of day, season, atmospheric conditions (e.g. smoke from a forest fire) and electrical infrastructure. For the purpose of this analysis, we use this case to evaluate Solar PV on the results absent other solutions.
Project triggered
Six months to completion

Inform Supporting Agencies
Kit Carson Electric Coop in the loop. State Historical Review Contacted. January 2019

Contractor Selected
Paradise Power Selected for contract for Option 2. State Historical Review letter received. Interdepartmental Agreement in place. February 2019

Purchase Order Issued
Contractor issued purchase order. Contractor’s proposed system design reviewed by ECMD. March 2019
Some statistics

- Cost $79,200 + Internet cable and phone line repair = $83,672
- Time from concept to completion 11 months.
- Construction time 12 weeks
District Office System Production to date

Right Now, You are SELLING
Solar 4.08kW
Grid 2.4kW
Load 1kW
Generator 0kW

CURRENT SYSTEM STATUS: 09/12/2019 13:24

The Year Of: 09/12/19

Solar 3,197.4KWh
To Battery 2,794.43KWh
From Battery 3,159.312KWh

Charger Status: 100%
V 52.6V
F 68 °F

Power Flow
240 VAC 58.9 Hz
Cimarron Forestry District Office from US 64 road with solar panels installed.
NM ECMD next project:
Hyde State Park Microgrid 2020
70 kW to 140 kW solar + storage

- New Mexico Energy Conservation and Management Division, Forestry Division and IT Services wishes to thank:
 - Seth Mullendore, Clean Energy Group
 - Geoff Oxnam, American Microgrid Solutions
 - Travis Simpkins, MuGrid
 - Julie Howe, US Department of Energy, State Energy Program
 - Daniel Weinman, Marti McDonald and Andy O’Reilly, Paradise Power Company
 - Luis Reyes, CEO, Kit Carson Electric Coop
 - And the many other supporters that helped make this project successful
Thank you for attending our webinar

Seth Mullendore
Vice President and Project Director
Clean Energy Group
seth@cleanegroup.org

Find us online:
www.resilient-power.org
www.cleanegroup.org
www.facebook.com/clean.energy.group
@cleanenergygrp on Twitter
@Resilient_Power on Twitter
Upcoming Webinars

FERC 841 Compliance Update
Tuesday, October 1, 3-4pm ET

Replacing Power Plants with Low-Income Residential Solar+Storage
Thursday, October 10, 1-2pm ET

Read more and register at www.cleanegroup.org/webinars