Energy Storage Technology Advancement Partnership (ESTAP) Webinar

QuEST: Optimizing Energy Storage Tool

Hosted by Seth Mullendore Clean Energy States Alliance

November 6, 2019

Housekeeping

	File View Help
::::::	- Audio
	O Telephone
	Mic & Speakers <u>Settings</u>
4	<u>♦ MUTED</u> 4 000000000
	Questions
	_
	[Enter a question for staff]
	Send
	Webinar Housekeeping Webinar ID: 275-918-366
	GoTo Webinar

Join audio

- Choose Mic & Speakers to use VoIP
- Choose Telephone and dial using the information provided

Click on the orange box with the arrow to open and close your control panel

Submit questions and comments via the Questions panel

This webinar is being recorded. We will email you a webinar recording within 48 hours. This webinar will be posted on CESA's website at <u>www.cesa.org/webinars</u>

www.cesa.org

Energy Storage Technology Advancement Partnership (ESTAP) (bit.ly/ESTAP)

ESTAP is supported by the U.S. Department of Energy Office of Electricity and Sandia National Laboratories, and is managed by CESA.

ESTAP Key Activities:

- 1. Disseminate information to stakeholders
 - ESTAP listserv >5,000 members
 - Webinars, conferences, information updates, surveys.
- 2. Facilitate public/private partnerships to support joint federal/state energy storage demonstration project deployment
- 3. Support state energy storage efforts with technical, policy and program assistance

ESTAP Project Locations:

Webinar Speakers

Ricky Concepcion Sandia National Laboratories

Tu Nguyen Sandia National Laboratories

Seth Mullendore Clean Energy States Alliance (moderator)

Thank you for attending our webinar

Seth Mullendore Project Director, CESA seth@cleanegroup.org

Find us online:

www.cesa.org

facebook.com/cleanenergystates

@CESA_news on Twitter

Upcoming Webinar

Energy Storage 101: Part 3 – Applications and Economics *Tuesday, November 19, 2019 at 1-2 pm ET*

This ESTAP webinar will look at when and where energy storage opportunities exist, which services can be effectively "stacked," how revenue-generating opportunities are sometimes limited due to market rules or utility tariffs, and what future opportunities might arise with changes in market rules and regulations.

Learn more and register at: www.cesa.org/webinars

CUEST An Energy Storage Application Suite

PRESENTED BY

Ricky Concepcion, Tu Nguyen

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security

Administration under contract DE-NA0003525.

SAND2019-13567 PE

2 OUTLINE

- •QuESt overview
- •How to obtain QuESt
- QuESt applications
 - QuESt Valuation
 - QuESt Data Manager
 - QuESt BTM
- •Behind-the-meter energy storage systems
- •Case study with QuESt: cost savings for large hotel with solar + storage

•Wrap-up and conclusions

OVERVIEW S

×

QuESt Valuation

Estimates value for a given energy storage system. Uses historical data and a given market structure to determine the maximum amount of revenue that the energy storage device could have generated by providing multiple services (e.g., ancillary services, arbitrage).

Get started

Copyright 2018 National Technology & Engineering Solutions of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights in this software.

Energy storage analysis software application suite

Q QuESt

<u>)</u>| |P<t

ΞΞ

QuESt Data Manager

Ś

1

OuESt BTM

k Q

•Developed as a graphical user interface (GUI) for the optimization modeling capabilities of Sandia's energy storage analytics group

- Version 1.0 publicly released in September 2018
- Version 1.2 available on GitHub
 - github.com/rconcep/snl-quest or sandia.gov/ess (tools)

4 WHY QUEST?

For energy storage project stakeholders

Accessible and easy-to-use software tool for energy storage valuation

For engineers and software developers

- Open source software project
- GUI design, application design, Pyomo optimization modeling
- Pyomo models and other code can be adjusted to fit specific needs

It's free

Released under an open source distribution license

Current application list

- QuESt Data Manager Manages acquisition of ISO market data, US utility rate data, commercial and residential load profiles, etc.
- QuESt Valuation Estimate potential revenue generated by energy storage systems providing multiple services in the electricity markets of ISOs/RTOs.
- QuESt BTM Estimate the cost savings for time-of-use/net energy metering customers using behind-the-meter energy storage systems.

For most users
Developed for user experience
No hassle installation

API/Library (coming soon)

Application/GUI

For power users
Use for Python scripting
More capabilities

6 HOW TO OBTAIN QUEST

C Searc

Check the "tools" section of the Sandia ESS website

https://www.sandia.gov/essssl/tools/quest/

The code is hosted on GitHubgithub.com/rconcep/snl-quest

•General requirements:

- Windows/OS X/Linux
- Solver for optimization

or jump to / Pull request	s Issues Marketplace Explore			
	rconcep / snl-quest Code ① Issues 6 □ Pull re	quests 0 🎹 Projects 0 💷 Wiki 👍 Ins		Star 23 V Fork 5
	Laboratories.	are application suite for energy storage simula		andia National Edit
	🕞 100 commits	2 branches 🗞 5 releases	2 contributors	ক্ষু View license
	Branch: master - New pull request		Create new file Upload files Find Fi	le Clone or download 🗸
	Concep Added notes to document typo fit	and incremented patch number	Latest com	nmit bd5abc1 10 days ago
	docs/ValuationOptimizer	Updating ValOp docs and report templates notatio	n	8 months ago
	🖿 es_gui	Fixed a typo in the ERCOT data downloader routine		10 days ago
	📄 libs/garden/garden.matplotlib	Fixed kivy garden packaging		6 months ago
	icenses	About and license for holidays package		3 months ago
	patch_note_resources	Fixed results viewer export png fatal crash.		12 days ago
	results	Saving chart figures for btm_cost_savings reports		3 months ago
	.gitignore	Sorting results; rate structure period check bug		2 months ago
	CHANGELOG.md	Added notes to document typo fix and incremented	d patch number	10 days ago
		first commit		8 months ago
	QuESt.kv	Reverted change to series.to_numpy() from series.v	alues and updated i	2 months ago
	README.md	Added notes to document typo fix and incremented	d patch number	10 days ago
	🗎 main.py	Added notes to document typo fix and incremented	d patch number	10 days ago
	setup.py	Reverted change to series.to_numpy() from series.v	alues and updated i	2 months ago

7 HOW TO OBTAIN QUEST

For Windows 10: we have an executable version of QuESt

- Fully pre-configured, just run the .exe
- Still requires an optimization solver
- Under GitHub releases for each version

∨1.2.c If concep released this 10 days ago Patch 1.2.c This patch incorporates a few bug fixes from previous minor revisions. It also introduces an experimental, packaged executable version of QuESt for easier use.

(h

Draft a new release

Edit

61.7 MB

QuESt

Releases

Tags

Latest release

• bd5abc1

© 1.2.c

- An executable version of QuESt has been released. We are in the process of testing compatibility with a
 variety of systems and environments, but these executables will allow you to circumvent most of the
 installation process.
 - $\circ\,$ No Python installation required; packaged with its own Python environment.
 - Third party solvers for Pyomo still required, but we will look into the possibility of packaging a solver such as GLPK in the archive.
 - Each executable is for a specific operating system. We will start with Windows 10 versions but are looking into OS X (Mojave) versions as well.
 - Packaged using PyInstaller.
 - Once we gather enough feedback that these packages are functional, they will become a staple of each release.
 - The package is available below as snl-quest-1.2.c-win10.zip (not labeled as source code)
 - O To run it, just extract the archive and run the snl-quest-1.2.c.exe file. It should launch as if you ran the python main.py.

Resolved issues

- An issue where attempting to download ISO/RTO market data for ERCOT resulted in a fatal crash.
- An issue where attempting to export a PNG from a results viewer when solved models were selected but no plot had yet been drawn resulted in a fatal crash.

Assets 3

🕲 snl-quest-1.2.c-win10.zip

Source code (zip)

Source code (tar.gz)

QUEST APPLICATIONS OVERVIEW

Given an energy storage device, an electricity market with a certain payment structure, and market data, how would the device maximize the revenue generated and provide value?

Byrne, Raymond H., et al. "Energy management and optimization methods for grid energy storage systems." *IEEE Access* 6 (2018): 13231-13260.

Market area

- Revenue streams
- Historical dataset to study
- Energy storage model parameters

QuESt	– 🗆 X
< 📭 Wizard	home about settings
Here's how the device generated revenue each month.	Reports
Revenue was generated based on participation in the selected revenue streams. The gross revenue generated over	Revenue (by month)
the evaluation period was \$3,064,793.94 . The gross revenue from arbitrage was -\$526,420.06 , an overall deficit. This implies participation in arbitrage was solely for the purpose of having capacity to offer regulation up services.	Revenue (by stream)
	Participation (total)
	Participation (by month)
\$372,795	
arbitrage	
regulation	
-\$81,578	

Revenue by month

stream

Revenue by revenue stream

 Frequency of participation in each available revenue

We use publicly available APIs, posted market data, and crowd-sourced data.

•LMPs, frequency regulation performance/capacity clearing prices, etc. posted by ISOs/RTOs

•U.S. utility rate structures sourced and validated by OpenEl.org

 Commercial and residential hourly load profiles for all TMY3 (typical meteorological year) locations in the U.S. by OpenEI.org

Hourly photovoltaic power profiles by PVWatts

Q QuESt										-	· □ ×
🕻 ᡇ Data	Manager: ISO/I	RTO Market and C	perations Data						home	e about	settings
Dowr	load IS	0/RT0 n	narket a	nd oper	ations data						
	SPP	F	MI	NYISO	MISO	ISO-N	E	ERCOT	(AISO	
	ISO-NE										
	Enter ISO-N	IE ISO Express o	redentials. 😣	Specify t	he range of months.		Pricin	<mark>g node</mark> ID and,	/or types of r	nodes	
	Username			Start:	January	2018	4006				
	Password	******		End:	December	2018	🗆 Inte	ernal Hub	Zones		
									Down		
										Setting	S

 LMPs, frequency regulation performance/capacity clearing prices, etc. posted by ISOs/RTOs

Use operator-provided APIs

 Use web crawling libraries to parse marketplace data portals

0 QuESt					-	
🕻 Data Manager: Utility Rate Structure	Data			home	about	settings
Search for a utility ra	Data.gov API key 🛛					
	pacific		Search			
	by name	by zip	by state (abbr.)			
Select a utility.	Select a rate st	ructure.				
Filter by name	e-tou option b					
PUD No 2 of Pacific County PacifiCorp	E-TOU Option B - Resid	ential Time of L	se Service (All Baseline Regions) (Effectiv	ve Date : 03/23/20	16)	
PacifiCorp	E-TOU Option B - Resid	ential Time of L	se Service (All Baseline Regions) (Effectiv	ve Date : 10/22/201	17)	
PacifiCorp PacifiCorp PacifiCorp PacifiCorp	E-TOU Option B - Resid	ential Time of L	Ise Service (All Baseline Regions) (Effectiv	ve Date : 12/30/201	16)	
Pacific Gas & Electric Co. Sierra Pacific Power Co						
			Continue			

 OpenEL.org hosts a database for U.S. utility rates

 Time-of-use energy rate schedules

Peak demand and flat demand rate schedules

Q QuESt

Data Manager: Hourly Commercial Load Profiles

home about settings

Download hourly load data by location and building type.

lter by name Filter by name	Filter by name
Albuquerque Intl AP IN Carlsbad Cavern City Air Terminal IO Clayton Muni AP IS Clovis Muni AWOS IT Clovis-Cannon AFB D Farmington-Four Corners Rgnl AP Gallup-Sen Clarke Field H H Holloman AFB J Las Cruces Intl AP M Roswell Industrial Air Park V Santa En County Muni AP	RefBldgMediumOfficeNew2004 RefBldgMediumOfficeNew2004 RefBldgMidriseApartmentNew2004 RefBldgOutPatientNew2004 RefBldgPrimarySchoolNew2004 RefBldgSecondarySchoolNew2004 RefBldgSmallHotelNew2004 RefBldgSmallHotelNew2004 RefBldgStand-aloneRetailNew2004 RefBldgStand-aloneRetailNew2004 RefBldgStripMallNew2004 RefBldgSuperMarketNew2004 RefBldgSuperMarketNew2004

https://openei.org/datasets/dataset/commercial-and-residentialhourly-load-profiles-for-all-tmy3-locations-in-the-united-states OpenEI.org also hosts simulated hourly load profiles for a typical meteorological year

- Residential (base, low, high)
- Commercial (16 reference building types by DOE)

QuESt						-	
< Data Manager: Photovoltaic Power Profi	iles				home	about	setting
Search for a photovolt	aic po	ower profile.					
	Data.gov	API key 9					
latitude	e	The latitude of the site in the range (-90, 90).	37.78	deg			
longitu	de	The longitude of the site in the range (-180, 180).	-122.42	deg			
system capacit		The nameplate capacity of the photovoltaic system.	5	kW			
losses		The total system losses, including all sources, in the range (-5, 99).	14	%			
tilt ang	;le	The tilt angle of the PV surface.	0	deg			
azimut	h angle	The azimuth angle of the PV surface.	0	deg			
	S	tandard Fixed (r	oof mounted)				
san_fran_5kW					Save		

PVWatts by NREL

 Uses data from the National Solar Radiation Database and a solar panel system model to simulate hourly power output

https://pvwatts.nrel.gov/version_6.php

A collection of applications for behind-the-meter energy storage. The first application estimates cost savings for time-of-use and net energy metering customers.

Incorporate specific utility rate structures (energy TOU schedule and rates, etc.)

Use location-specific simulated load and photovoltaic power data

Nguyen, T., and R. Byrne. "Maximizing the cost-savings for time-of-use and net-metering customers using behind-the-meter energy storage systems." *Proceedings of the 2017 North American Power Symposium (NAPS)*. 2017.

 Utility rate structure for time-of-use energy rate schedules, demand rate schedules, net metering, etc.

- Load profile based on building type
- PV profile if solar + storage configuration

 Energy storage system parameters

QuESt					-	
🔇 Time-of-Use Cost Savings			1	home	about	setting
Specify the energy storage	e system parameters.					
energy capacity	The maximum amount of energy that the ESS can store.	80	kWh			
power rating	The maximum rate that at which the ESS can charge or discharge energy.	20	kW			
transformer rating	The maximum amount of power that can be exchanged.	1000000	kW			
self-discharge efficiency	The percentage of stored energy that the ESS retains on an hourly basis.	100	%/h			
round trip efficiency	The percentage of energy charged that the ESS actually retains.	85	%			
minimum state of charg	The minimum ESS state of charge as a percentage of energy capacity.	0	%			
maximum state of charį	The maximum ESS state of charge as a percentage of energy capacity.	100	%			
initial state o charge	f The percentage of energy capacity that the ESS begins with.	50	%			
Previous					Next	

•Utility rate structure for time-of-use energy rate schedules, demand rate schedules, net metering, etc.

- Load profile based on building type
- •PV profile if solar + storage configuration
- Energy storage system parameters

QuESt								- 0	×			
🔇 ቢ Time-of-Use Cost Savings		home about setti	ings									
Here's the total bill with a		Reports										
The total bill is the sum of demand	ESS	Total bill										
was able to decrease the total char		Total bill comparison										
		Demand charge comparison										
		Energy charge comparison										
		NEM comparison										
\$3,376								Peak demand comparison				
\$3,172												
without ES						- 8	_					
with ES												
0 Jan Fe	b Mar Apr	May Jun	Jul Au	ıg Sep	Oct	Nov De	20	Generate report				

Compare monthly bill with and without energy storage

- Peak demand reduction to decrease demand charges
- Time-shifting to reduce timeof-use energy charges

Net metering credits

QuESt														_	o x
🕻 ቢ Time-of-Use Cost Savir	ıgs												home	about	settings
Here are the peak demand values each month.												Reports			
The peak demand value each month is used to compute flat demand charges, if applicable. For this rate structure,											ructure,	Total bill			
there were no flat demand charges.													Total bill comp	arison	
													Demand charg	e compar	rison
													Energy charge	comparis	son
													NEM comparis	on	
70 kW —							_						Peak demand	comparis	ion
67 kW —		_		_											
without ES with ES															
	Jan F	eb M	/lar	Apr M	Лау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Genei	rate repo	ort

Compare monthly bill with and without energy storage

- Peak demand reduction to decrease demand charges
- Time-shifting to reduce timeof-use energy charges

Net metering credits

BEHIND-THE-METER ENERGY STORAGE SYSTEMS OVERVIEW AND CASE STUDY

FRONT-OF-METER VS. BEHIND-THE-METER

• Behind-the-meter refers to the systems that are located at the customers' sites (homes, commercial and industrial facilities). BTM systems are usually owned by customers and intended for customers' use.

UTILITY RETAIL RATES

26

- Energy Charge: a charge to customers for the amount of energy consumed, \$/kWh.
- **Demand Charge**: a charge to customers for their peak power, \$/kW.
- Other Charges: meter and basic customer fees are independent of consumption, \$/month.

	Energy Charge	Demand Charge	Other Charges
Residential Customers	Yes	Yes/No*	Yes
Commercial Customers	Yes	Yes/No*	Yes
Industrial Customers	Yes	Yes	Yes

* Demand charge is often applied to large commercial

customers

UTILITY RATE STRUCTURES – FIXED RATE

Image Credit: PG&E

• **Fixed rate:** or often called tiered rate is the rate structure where a constant price is applied to each tier of energy consumption.

UTILITY RATE STRUCTURES – DYNAMIC RATE

- **Dynamic rate:** includes the rate structures where energy and demand prices are time dependent.
- Utilities' motivations for dynamic-price rate:
 - Increase customer satisfaction with options to reduce energy bill.
 - Encourage load growth.
 - Reduce peak demand by load shifting.
 - Comply with statutory or regulatory mandate

Fixed vs. Variable

Electricity Rate Plan

UTILITY RATE STRUCTURES – DYNAMIC RATE – TIME-OF-USE

- In TOU pricing, energy and demand prices are set in advance for different time
- Time schedules for TOU:

periods.

- Hour: peak, part-peak, and off- peak hours.
- Day: weekdays, weekends, and holidays.
- Month: summer and winter

Southern California Edison – Schedule TOU-D-A

•

UTILITY RATE STRUCTURES – DYNAMIC RATE

30

Source: Environmental Defense Fund (EDF)

UTILITY RATE STRUCTURES – NET METERING PROGRAM

31

(h

- Net metering (NEM) programs allow customers who own renewable energy systems to export their excess energy to the grid.
- The net energy exported to the grid will be used to offset the customers' consumption. At the end of the true-up period, the customers will be charged/credited for the net energy usage/surplus.

Image Credit - Lowcountry Solar

HOW CAN UTILITY CUSTOMERS BENEFIT?

• To benefit from dynamic rate structures, the customers must be able to change their loads in a manner that lowers their electricity bills without interrupting their operations (commercial and industrial customers) or sacrificing their conveniences (residential customers).

Renewable Time Shift

32

Time-of-use Management

Demand Charge Reduction

33

ħ

• The objective is to minimize the electricity bill such that the physical limits of energy storage device and the inverter are satisfied.

 $\min\{C^m_E+C^m_N+C^m_D\}$

s.t. energy storage and inverter constraints $C_{\rm E}^{\rm m}$ is the energy charge of period m $C_{\rm D}^{\rm m}$ is the demand charge of period m $C_{\rm N}^{\rm m}$ (≤ 0) is the net metering charge of period m.

• The decision variables are the charge and discharge power of the energy storage device at each hour

•This is a behind-the-meter energy storage problem, so we will use QuESt BTM.

•First, we head to QuESt Data Manager to get what we need.

C QuESt				– 🗆 X
🔇 ᡇ Data Manager	home	about	settings	data manager home
	Download data for QuESt applications.			
	Internet connectivity is required to download data.			
	ISO/RTO Market and Operations			
	Utility Rate Structures			
	Commercial/Residential Building Load Profiles			
	Photovoltaic Power Profiles			

•For this analysis, we need:

- Utility rate structure
- Load profile for the property
- PV power profile

home about settings data manager home structure. ra.gov API key • stific Search by name by zip by state Select a rate structure. e-19
cific Search by name by zip by state Select a rate structure.
cific Search by name by zip by state Select a rate structure.
by name by zip by state Select a rate structure.
Select a rate structure.
e-19
 E-19 Medium General Demand TOU (Secondary) (Effective Date : 03/01/2017) E-19 Medium General Demand TOU (Secondary) (Effective Date : 01/01/2017) E-19 Medium General Demand TOU (Secondary) (Effective Date : 03/24/2016) E-19 Medium General Demand TOU (Secondary, Voluntary) (Effective Date : 03/01/2018)
 E-19 Medium General Demand TOU (Secondary Voluntary) (Effective Date • 01/01/2018) This schedule is available on a voluntary basis for customers with maximum billing demands less than 500 kW. Customers voluntarily taking service on this schedule are subject to all the terms and conditions below, unless otherwise specified in Section 14. Ongoing daily Time-of-Use (TOU) meter charges applicable to customers taking voluntary TOU service under this rate schedule will no longer be applied if the customer has a SmartMeter™ installed.

36

•Our hotel's utility is Pacific Gas & Electric.

- •The applicable rate structure for our property is "E-19 Medium General Demand TOU (Secondary, Voluntary)".
- •We'll need an API key for this tool and the PV profile downloader. There's a help prompt to get you started with that short process.

Q QuESt																										-	
🔇 📿 Data Manag	er: Utility Rate Structure [Data														hor	ne	a	bout	:	set	ting	5	dat	a m	ana	ger home
Verify the	e energy rate	e str	ucture.																								
Period	Rate [\$/kWh]			00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
0	0.09401	Ð		Jan o	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
1	0.11004			Feb o	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	ο
2	0.08671			Mar o		0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
3	0.11613			Apr o	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
4	0.16055			May <mark>2</mark>	2	2	z	z	z	2	z	3	з	з	з	4	4	4	4	4	4	3	з	з	2	2	2
	0.10055		Weekday	Jun 🛛 🛛	2	2	2	2	2	2	2	3	з	3	з	4	4	4	4	4	4	3	з	З	2	2	2
				Jul 2	2	2	2	2	2	2	2	3	3	3	3	4	4	4	4	4	4	3	3	3	2	2	2
				Aug 🛛	2	2	2	2	2	2	2	3	3	3	з	4	4	4	4	4	4	3	з	3	Z	2	2
				Sep <mark>2</mark>	2	2	2	z	z	2	2	3	3	3	з	4	4	4	4	4	4	3	3	3	z	2	2
				Oct 2	2	2	2	2	2	2	2	3	3	3	3	4	4	4	4	4	4	3	3	3	2	2	2
				Nov o		0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
				Dec o			0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
				_		02								10	11	12	13	14	15	16	17	18	19		21		23
				Jan o		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				Feb o		0		0	0	0	0		0		0	0	0	0	0	0	0	0	0	0	0	+	0
				Mar o	—	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				Apr o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			Weekend	May 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
			weekend	Jun <mark>2</mark> Jul 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
					2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
				Aug <mark>2</mark> Sep <mark>2</mark>	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
				Oct 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
				Nov o	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	2 0	2		2
				Dec o	\rightarrow		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			P	revious			-0-		<u> </u>	onti	·				0-	10-	-0-	10-	<u> </u>	10-	10	10-	-0-	10	10		0

37

•Verify that the energy and demand rate schedules are correct.

QuESt																										-	
Data Manag	er: Utility Rate Structure Da	ata														hor	ne	ał	pout	:	set	ting	s	dat	a ma	ana	ger ho
Verifv th	e demand rat	e st	ructure.																								
Period	Time-of-Use Rate [\$/			0	0 01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
0	0	Ð		Jan d) 0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
1	0.12	Ð		Feb o) 0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
2	5.4	Ð		Mar o) 0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
3	19.65			Apr 🛛	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
-	15.05			May) 0	0	0	0	0	0	0	2	2	2	2	3	з	3	з	з	з	z	z	z	0	0	0
			Weekday	Jun d) 0	0	0	0	0	0	0	2	2	2	2	3	з	3	з	з	з	2	2	2	0	0	0
				Jul o	0	0	0	0	0	0	0	2	2	2	2	3	3	3	3	3	З	2	2	2	0	0	0
				Aug 🖸	0	0	0	0	0	0	0	2	2	2	2	3	3	3	з	з	З	Z	2	2	0	0	0
				Sep 🛛	0	0	0	0	0	0	0	2	2	2	z	3	3	3	з	з	з	z	z	z	0	0	0
				Oct o	0	0	0	0	0	0	0	2	2	2	2	3	3	3	з	3	З	2	2	2	0	0	0
				Nov	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
				Dec o	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
Month	Flat Rate [\$/kW]			0	0 01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Jan	17.74	₽		Jan d		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Feb	17.74	₽		Feb o) ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mar	17.74	Ð		Mar) ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apr	17.74	Ð		Apr o		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
May	17.74	₽		May) ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jun	17.74	₽	Weekend	Jun) ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jul	17.74	Ð		Jul o		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
Aug	17.74	₽		Aug		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
Sep	17.74	₽		Sep o		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oct	17.74	Ð		Oct d		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nov	17.74	€		Nov o		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
Dec	17.74			Dec	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dec	17.74		Pre	vious					C	onti	nue	2															

•Verify that the energy and demand rate schedules are correct.

(

0 QuESt						- 🗆 X
🔇 Data Manager: Utility Rate Structure Data			home	about	settings	data manager home
Finishing up.						
	Peak demand					
	minimum [kW] 0	maximum [kW]	500			
	Net (energy) meter	ing				
		-				
	Net metering 1.0	Net metering	2.0			
	Energy is sold at a fixed en price.	ergy Energy is sold at the ti energy price.	ime-of-use			
	Save rate structure	: 				
	my-SF-hotel-PGE		Save			
	Previous	Start Over	lanager Homo			
	Previous	Start Over Data N	Aanager Home			

•Save the rate structure for later.

QuESt					-	o x
🕻 Data Manager		home	about	settings	data manag	er home
	Download data for QuESt applications.					
	igoplus Internet connectivity is required to download data.					
	ISO/RTO Market and Operations					
	Utility Data Structures					
	Utility Rate Structures		100			
	Commercial / Desidential Building Load Profiles					
	Commercial/Residential Building Load Profiles					
	Photovoltaic Power Profiles					

40

•Now we'll obtain the load profile for the building.

•Now we'll obtain the load profile for the building.

d hourly lo	oad data by location a	nd building type.
Filter by name	san	Filter by name
AK	San Diego-Lindbergh Field	RefBldgFullServiceRestaurantNew2004
AL	San Diego-Miramar NAS	RefBldgHospitalNew2004
AR	San Diego-Montgomery Field	RefBldgLargeHotelNew2004
AZ	San Diego-North Island NAS	RefBldgLargeOfficeNew2004
CA	San Francisco Intl AP	RefBldgMediumOfficeNew2004
СО	San Jose Intl AP	RefBldgMidriseApartmentNew2004
СТ	San Luis Obispo AP	RefBldgOutPatientNew2004
DE	Sandberg	RefBldgPrimarySchoolNew2004
FL	Santa Ana-John Wayne AP	RefBldgQuickServiceRestaurantNew2004
GA	Santa Barbara Muni AP	RefBldgSecondarySchoolNew2004
н	Santa Maria Public AP	RefBldgSmallHotelNew2004
IA	Santa Monica Muni AP	RefBldgSmallOfficeNew2004

47

•Now we'll obtain the load profile for the building.

•Finally, we'll grab the PV power profile for our property.

QuESt			- 🗆 X
🔇 Data Manager: Photovoltaic Power Profiles		home about	settings data manager home
Search for a photovoltaic p	ower profile.		
Data.gov	/ API key 🛛 AHKRnsqzqRbhOZ9XU2C63gwFEsPAS	XtQJL3b1Pd0	
latitude	The latitude of the site in the range (-90, 90).	37.78 deg	
longitude	The longitude of the site in the range (-180, 180).	-122.42 deg	
system capacity	The nameplate capacity of the photovoltaic system.	50 kW	
losses	The total system losses, including all sources, in the range (-5, 99).	14 %	
tilt angle	The tilt angle of the PV surface. Defaults to site latitude.	deg	
azimuth angle	The azimuth angle of the PV surface.	180 deg	
	Standard Fixed (r	roof mounted)	
my-SF-hotel-50kW-rooftop			Save

44

•Finally, we'll grab the PV power profile for our property.

•Now that we have all the data that we need, we can return home and start using QuESt BTM for the analysis.

•We'll use the Time-of-Use Cost Savings wizard.

•Now that we have all the data that we need, we can return home and start using QuESt BTM for the analysis.

•We'll use the Time-of-Use Cost Savings wizard.

17

•Proceeding through the wizard, we select the data that we had just downloaded when prompted.

•Our proposed energy storage system is 400 kWh/100 kW, so we'll enter that in.

Q QuESt		-	
🕠 Time-of-Use Cost Savings	home	about	settings
Select a load profile. Select a load profile to represent the demand connected to the energy storage system.			
Filter by name			
commercial/RefBldgFullServiceRestaurantNew2004_v1.3_7.1_4B_USA_NM_ALBUQUERQUE.csv commercial/RefBldgFullServiceRestaurantNew2004_v1.3_7.1_8A_USA_AK_FAIRBANKS.csv			
commercial/RefBldgLargeHotelNew2004_7.1_5.0_3C_USA_CA_SAN_FRANCISCO.csv commercial/RefBldgLargeHotelNew2004_v1.3_7.1_4A_USA_MD_BALTIMORE.csv commercial/RefBldgLargeOfficeNew2004_7.1_5.0_3C_USA_CA_SAN_FRANCISCO.csv			
commercial/RefBldgMidriseApartmentNew2004_v1.3_7.1_4A_USA_MD_BALTIMORE.csv commercial/RefBldgPrimarySchoolNew2004_v1.3_7.1_5B_USA_CO_BOULDER.csv			
commercial/RefBldgQuickServiceRestaurantNew2004_v1.3_7.1_2A_USA_TX_HOUSTON.csv commercial/RefBldgSecondarySchoolNew2004_v1.3_7.1_4A_USA_MD_BALTIMORE.csv commercial/RefBldgSuperMarketNew2004_v1.3_7.1_5B_USA_C0_BOULDER.csv			
residential/USA_AK_Anchorage.Intl.AP.702730_TMY3_BASE.csv residential/USA_CA_Mountain.View-Moffett.Field.NAS.745090_TMY3_LOW.csv			
residential/USA_CA_San.Francisco.Intl.AP.724940_TMY3_BASE.csv residential/USA_CA_San.Francisco.Intl.AP.724940_TMY3_LOW.csv			
residential/USA_DE_Dover.AFB.724088_TMY3_HIGH.csv residential/USA_KY_Fort.Knox-Godman.AAF.724240_TMY3_HIGH.csv			
residential/USA_NM_Albuquerque.Intl.AP.723650_TMY3_BASE.csv residential/USA_NY_Elmira.Rgnl.AP.725156_TMY3_HIGH.csv			

•Proceeding through the wizard, we select the data that we had just downloaded when prompted.

•Our proposed energy storage system is 400 kWh/100 kW, so we'll enter that in.

Next

QuESt		_	
Time-of-Use Cost Savings	home	about	settings
Select a PV power profile.			
Select a PV power profile to represent the PV connected to the energy storage system.			
If there is no PV connected, feel free to skip this step.			
Filter by name			
00 030419 03215kWABQ 0325abq10kw 1000kWABQ 500kw 50kwSF 50kwSF 5kwSFroofmount abqrooftop50kW d example			
mySFhotel50kWrooftop ovvv ovvvd pvdata			
Previous		Next	:

•Proceeding through the wizard, we select the data that we had just downloaded when prompted.

•Our proposed energy storage system is 400 kWh/100 kW, so we'll enter that in.

Q QuESt					-	□ ×
Time-of-Use Cost Savings				home	about	settings
Specify the energy storage	system parameters.					
energy capacity	The maximum amount of energy that the ESS can store.	400	kWh			
power rating	The maximum rate that at which the ESS can charge or discharge energy.	100	kW			
transformer rating	The maximum amount of power that can be exchanged.	1000000	kW			
self-discharge efficiency	The percentage of stored energy that the ESS retains on an hourly basis.	100	%/h			
round trip efficiency	The percentage of energy charged that the ESS actually retains.	85	%			
minimum state of charge	The minimum ESS state of charge as a percentage of energy capacity.	0	%			
maximum state of charge	The maximum ESS state of charge as a percentage of energy capacity.	100	%			
initial state of charge	The percentage of energy capacity that the ESS begins with.	50	%			
Previous					Next	:

•Proceeding through the wizard, we select the data that we had just downloaded when prompted.

•Our proposed energy storage system is 400 kWh/100 kW, so we'll enter that in.

•Once everything's setup, we'll click "Next" to initiate the model building and solution process.

(h

 In the background, the specified data is being loaded, the optimization models are being constructed, and the models are being solved.

•After a brief wait, a prompt will notify you that the computation is complete.

Previous

Module Type: Standard System Losses: 14%

Next

QuESt			-	
🕻 🔍 Time-of-Use Cost Savings		home	about	settings
Building and solving mod	els			
	Success!			
	All calculations finished. Let's check out the results!			

•Once everything's setup, we'll click "Next" to initiate the model building and solution process.

 In the background, the specified data is being loaded, the optimization models are being constructed, and the models are being solved.

•After a brief wait, a prompt will notify you that the computation is complete.

•We can now view the wizard's report of results and view several summary graphics.

(h

- •Based on the calculations, the addition of the energy storage system reduced annual charges by about \$36k.
- •This was mostly due to demand charge reduction.

•Peak demand each month was reduced by about 100 kW.

•We can now view the wizard's report of results and view several summary graphics.

(iii)

- •Based on the calculations, the addition of the energy storage system reduced annual charges by about \$36k.
- •This was mostly due to demand charge reduction.

•Peak demand each month was reduced by about 100 kW.

•We can now view the wizard's report of results and view several summary graphics.

- •Based on the calculations, the addition of the energy storage system reduced annual charges by about \$36k.
- •This was mostly due to demand charge reduction.
- •Peak demand each month was reduced by about 100 kW.
- •We can also create a summary report that includes formulation details and the results.

Behind-the-Meter Energy Storage Cost Savings Report

Autogenerated using QuESt BTM

May 13, 2019

This report shows the results from optimizations performed by QuESt BTM.

Scenario Summary

Utility: Pacific Gas & Electric Co.

Rate Structure: E-19 Medium General Demand TOU (Secondary, Voluntary)

Load Profile: commercial/RefBldgLargeHotelNew2004_7.1_5.0_3C_USA_CA_SAN_FRANCISCO.csv

Photovoltaic Power Profile

Location: 37.78, -122.42 System Capacity: 50 kW Azimuth: 180 deg Tilt: 37.78 deg Array Type: Fixed (roof mounted) Module Type: Standard System Losses: 14%

Energy Storage System Parameters

Parameter	Value	Units
initial state of charge	50	%
maximum state of charge	100	%
minimum state of charge	0	%
round trip efficiency	85	%
self-discharge efficiency	100	%/h
transformer rating	1000000	kW
notion rating	100	LAM

•We can also create a summary report that includes formulation details and the results.

We can retry the wizard with different energy storage system parameters. Or we can try different PV/load profiles, rate structures, etc.

Is the energy storage system worth it? It will depend on the financials of acquiring and operating it... but we have an estimate on its performance value potential.

RELATED WORK

58

- 1. Byrne, R. H., Nguyen, T. A., Copp, D. A., Chalamala, B. R., & Gyuk, I, "Energy Management and Optimization Methods for Grid Energy Storage Systems," in IEEE Access, vol. 6, pp. 13231-13260, 2018.
- 2. T. A. Nguyen, D. A. Copp, R. H. Byrne, B. R. Chalamala, "Market Evaluation of Energy Storage Systems Incorporating Technology-specific Nonlinear Models," in IEEE Transactions on Power Systems, vol. 34, no. 5, pp. 3706 3715, April 2019.
- 3. T. A. Nguyen, D. A. Copp, R. H. Byrne, "Stacking Revenue of Energy Storage System from Resilience, T&D Deferral and Arbitrage," accepted for the 2019 IEEE Power and Energy Society General Meeting, Aug 2019, Atlanta, GA.
- 4. R. Concepcion, F. Wilches-Bernal, R. H. Byrne, "Revenue Opportunities for Electric Storage Resources in the Southwest Power Pool Integrated Marketplace," accepted for the 2019 IEEE Power and Energy Society General Meeting, Aug 2019, Atlanta, GA.
- 5. F. Wilches-Bernal, R. Concepcion, R. H. Byrne, "Participation of Electric Storage Resources in the NYISO Electricity and Frequency Regulation Markets," accepted for the 2019 IEEE Power and Energy Society General Meeting, Aug 2019, Atlanta, GA.
- 6. D. A. Copp, T. A. Nguyen, and R. H. Byrne, "Adaptive Model Predictive Control for Real-time Dispatch of Energy Storage systems," accepted for the 2019 IEEE American Control Conference, Jul 2019, Philadelphia, PA.
- 7. A. Ingalalli, A. Luna, V. Durvasulu, T. Hansen, R. Tonkoski, D. A. Copp, T. A. Nguyen, "Energy Storage Systems in Emerging Electricity Markets: Frequency Regulation and Resiliency," accepted the 2019 IEEE Power and Energy Society General Meeting, Aug 2019, Atlanta, GA.
- 8. T. A. Nguyen and R. H. Byrne, "Optimal Time-of-Use Management with Power Factor Correction Using Behind-the-Meter Energy Storage Systems," in the proceedings of the 2018 IEEE Power and Energy Society General Meeting, Aug 2018, Portland, OR. (Selected for Best Paper Session in Power System Planning, Operation, and Electricity Markets.)
- 9. T. A. Nguyen, R. Rigo-Mariani, M. Ortega-Vazquez, D.S. Kirschen, "Voltage Regulation in Distribution Grid Using PV Smart Inverters," in the proceedings of the 2018 IEEE Power and Energy Society General Meeting, Aug 2018, Portland, OR.
- 10. R. H. Byrne and T. A. Nguyen, "Opportunities for Energy Storage in CAISO," in the proceedings of the 2018 IEEE Power and Energy Society General Meeting, Aug 2018, Portland, OR.
- 11. D. A. Copp, T. A. Nguyen and R. H. Byrne, "Optimal Sizing of Behind-the-Meter Energy Storage with Stochastic Load and PV Generation for Islanded Operation," in the proceedings of the 2018 IEEE Power and Energy Society General Meeting, Aug 2018, Portland, OR.
- 12. T. A. Nguyen, R. H. Byrne, B. R. Chalamala and I. Gyuk, "Maximizing The Revenue of Energy Storage Systems in Market Areas Considering Nonlinear Storage Efficiencies," in the proceedings of the 2018 IEEE Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2018), June 2018, Amalfi, Italy.
- 13. R. H. Byrne, T. A. Nguyen, D. A. Copp and I. Gyuk, "Opportunities for Energy Storage in CAISO: Day-Ahead and Real-Time Market Arbitrage," in the proceedings of the 2018 IEEE Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2018), June 2018, Amalfi, Italy.
- 14. Christoph Lackner, T. A. Nguyen, Raymond H. Byrne and Frank Wiegandt, "Energy Storage Participation in the German Secondary Regulation Market," in the proceedings of the 2018 IEEE Transmission and Distribution Conference and Exposition, Apr 2018, Denver, CO.
- 15. T. A. Nguyen, R. H. Byrne, R. Concepcion, and I. Gyuk, "Maximizing Revenue from Electrical Energy Storage in MISO Energy & Frequency Regulation Markets," in Proceedings of the 2017 IEEE Power Energy Society General Meeting, Chicago, IL, July 2017, pp. 1–5.
- 16. T. A. Nguyen and R. H. Byrne, "Maximizing the Cost-savings for Time-of-use and Net-metering Customers Using Behind-the-meter Energy Storage Systems," in Proceedings of the 2017 North American Power Symposium, Morgan Town, WV, 2017, pp. 1-7.
- 17. R. H. Byrne, R. J. Concepcion and C. A. Silva-Monroy, "Estimating potential revenue from electrical energy storage in PJM," 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, 2016, pp. 1-5.

Develop new applications

- Integrated resource planning tools
- Optimizing with costs
- Resilience
- More value streams
- RFP templates

Release API/Library

- Webinars, tutorials, workshops
- Integrate user feedback and requests

60 Acknowledgements

The authors would like to acknowledge the support and guidance from Dr. Imre Gyuk, the program manager for the U.S. Department of Energy Office of Electricity Energy Storage program.

Authors Ricky Concepcion David Copp Tu Nguyen Felipe Wilches-Bernal

https://www.sandia.gov/ess-ssl/tools/quest/

Inquiries to: snl-quest@sandia.gov

Ricky Concepcion rconcep@sandia.gov

Follow us on GitHub: github.com/rconcep/snl-quest