

Solar+Battery Storage Fire Safety Part 1: **Residential and Commercial** Solar+Storage

June 4, 2025

www.cleanegroup.org

Webinar Logistics

We are now using Zoom Webinars!

Thank you for your patience as we get used to this platform. We encourage you to provide feedback in the post-webinar survey or via email.

All attendees are in "listen only" mode – your webcam and microphone are disabled. The Chat function is also disabled.

Submit questions and comments via the Q&A panel

Automated captions are available

Speaker bios will be made available in the Chat

This webinar is being recorded. We will email you a webinar recording within 48 hours. This webinar will be posted on CEG's website at <u>www.cleanegroup.org/webinars</u>

<u>?</u>

Affordable, reliable, clean energy for all.

Climate Resilience and Community Health

Distributed Energy Access and Equity 4

Energy Storage and Flexible Demand

www.cleanegroup.org

Fossil Fuel Replacement

Resilient Power Project

Building the foundation for energy resilient communities.

www.resilient-power.org

Rooftop solar installation in Dorchester, MA. Credit: Resonant Energy

Technical Assistance Fund

Providing technical support to build local resilience.

www.cleanegroup.org/initiatives/technical-assistance-fund

Solar installation in Puerto Rico. Credit: Solar Responders

Webinar Speakers Solar+Battery Storage Fire Safety Part 1: Residential and Commercial Solar+Storage

Olivia Tym

Project Manager, **Clean Energy Group** (Moderator)

Retired Captain, Las Vegas Fire & Rescue Founder, Solar and Fire Education (SAFE)

Richard Birt

Upcoming Webinars

Resilient Power for North Carolina: Solar+Storage Efforts in the Wake of Hurricane Helene (June 25)

Solar+Battery Storage Fire Safety Part 2: Utility-Scale Projects and EVs (July 8)

Community Storage: SMUD's Energy StorageShares Program (July 17)

Read more and register at <u>www.cleanegroup.org/webinars</u>

CleanEnergyGroup

www.cleanegroup.org | info@cleanegroup.org

First Responder Safe Response for Solar + Energy Storage Systems (ESS)

Presented by:

Captain Richard Birt, (Ret)

Las Vegas Fire & Rescue.

Founder of Solar And Fire Education.

Solar Equipment

Solar Panels: Generates DC electricity at ~37 volts/panel & up to 600 volts for the system

Solar Inverters: Converts DC electricity to 240 volts AC connected to the electrical panel

Electrical Panels: Distribution point for 120V & 240V home circuits, connected to the utility

690.12 Rapid Shutdown Signage

Originally introduced in 2014

- Array boundary 914 mm (3 ft)
- Introduced labeling

• 2017 NEC

- Reduced array boundary to 315 mm (1 ft)
- Improved labeling
- 2020 NEC
 - Specifically called out UL 3741
- 2023 NEC
 - Removed 690.12(B)(3)(3) exposed wiring methods

SOLAR PV SYSTEM RAPID SHUTDOWN

SOLAR PV SYSTEM RAPID SHUTDOWN

RAPID SHUTDOWN SWITCH FOR SOLAR PV SYSTEM

Home Battery Storage

Typically homes with battery storage have solar, too.

I	Tesla Powerwall	LG Chem	Enphase IQ Battery	
Voltages	240V AC	400V DC	240	/ AC
Amps	21	12.5	5.3	
kWh				

With a battery, the house may still be energized even if there is no power from the grid.

Battery Cells

Tesla nominal cell voltage: 3.6 Volts

Enphase nominal cell voltage: 3.2 Volts

LG nominal cell voltage: 3.7 Volts

How to Control Electrical Utilities Safely on a working fire

The way the fire service has been doing this for the last 100 years has changed with the introduction of solar and batteries.

Utility Basics - How do we know?

- How do firefighters know if there are multiple power sources on site?
 - **Labels** at the meter, main panel, generation panel, and/ or backup panel
- Three sources of power
 - Grid electricity this has not changed.
 Go to the main panel and shut off the AC/ DC breaker box coming from
 - Solar
 - Battery
- How do you stop the flow from the sources below?

De-energize all solar and storage equipment.

If storage is confirmed on site identify the specific switch/breaker and shut off.

Opportunity to <u>shut off power</u> at inverters, subpanel disconnect, and gateway. In the basement - shut off power at the main panel. In this picture above- Disconnect for Home is also in the Tesla Gateway

Disconnecting the Batteries

Handled disconnect (left)

- Mechanical means of disconnecting
- Could be one per battery or one for multiple batteries

Battery switch (right)

- Electrical means of disconnecting
- Only need one for multiple batteries
- Has an indicator light when it's off

Stop the flow of electricity from the battery to the house

Critical First Step: Ventilation

- Locate the battery
- If the battery is in an enclosed area and exposed to 200 Fahrenheit and above, the battery may start degrading and off-gassing
- It is critical at this point to make sure the area the battery is stored in is adequately ventilated before entering

Battery Chemistry

	LG CHEM	Enphase IQ Battery	TESLA Powerwall
Battery Chemistry	Lithium Nickel Manganese Cobalt Oxide	Lithium Iron Phosphate	Lithium Nickel Cobalt Aluminum Oxide
Thermal Runaway Temperature	210°C	270°C	150°C
Products of Combustion	Carbon Monoxide (CO) & Hydrogen (H)	Carbon Monoxide (CO) & Hydrogen (H)	Carbon Monoxide (CO) & Hydrogen (H)

Tests have shown that battery cells start degrading at as low as 150 degrees C. At this temperature, there is the potential to off-gas hydrogen and carbon monoxide which can create an explosive atmosphere in a contained area. **Ventilation is key!**

Thermal Runaway

Gas Concentration

Thermal Runaway

Explosibility

2)	MAXIMUM CLOSED VESSEL DEFLAGRATION PRESSURE (psi-g)						
	PROPANE	NCA	ETHYLENE	LFP	ACETYLENE		
	115	113	116	<mark>122</mark>	154		

Tactics andStrategies on howto SafelyExtinguish a Solarand Battery Fire

Extinguishing Solar Panels

If there is a roof on fire with solar panels involved, these are the steps to safely extinguish the fire:

- Use a straight stream from 20' away for the initial attack and knock down the fire.
- 2. After the fire is extinguished, **do not touch the panels** during daylight hours. Overhaul operations involving solar panels during the day should be done after de energizing the panels.
- 3. If it's possible to cover the solar panels without touching them, use 3mm black plastic sheeting to cover the panels after the fire has been extinguished and the panels have cooled.

Vertical Ventilation of a Roof with Solar Panels

- 1. Firefighters should stay away from solar panels and the conduit running to the inverter or charge controller if there is no rapid shutdown.
- 2. If the firefighters can find an area on the roof that is clear of the above components, they can safely cut a hole for ventilation
- 3. If it is impossible to find a safe area on the roof to cut (clear of the solar panels and conduit), then horizontal ventilation should be the tactic used

Extinguishing a Battery Fire

- 1. If the battery is on fire, approach it from the side using either:
 - a. A straight stream from 20' away flowing at a minimum of 100-150 GPM
 - b. A fog pattern from 10' away flowing at a minimum of 100-150 GPM
- 2. After the battery fire has been extinguished, **cool the battery** to ambient air temperature using the same attack line with copious amounts of water
- Once the battery has been extinguished and cooled it needs to be removed from the residence by a qualified electrician because of the potential to rekindle

Battery Firefighting Points

• Extinguishing Medium:

 NFPA, LG Chem, and Tesla recommend copious amounts of water to cool the cells and stop thermal runaway (TR)

Chemicals or foam should not be used to extinguish Lithium-ion batteries

Electrical Shock Hazard: According to DNV GL's 3rd party testing there is no electrical shock hazard from extinguishing with a hose.

Airborne Hazards: Burning or hot batteries will release toxic vapors. Responders **must wear full PPE, including SCBA,** and take appropriate measures to protect the public. Use fog streams or PPV fans to direct vapors.

Use water when aggressively firefighting. Be mindful of gases generated during firefighting.

5 Key Takeaways

Isolate the 3 sources of power entering the home.

Ventilate, if the battery is exposed to heat in an enclosed environment

Use water!

Do not touch the solar panels or the battery, have a qualified electrician remove them.

Remember, the battery can rekindle depending on the chemistry.